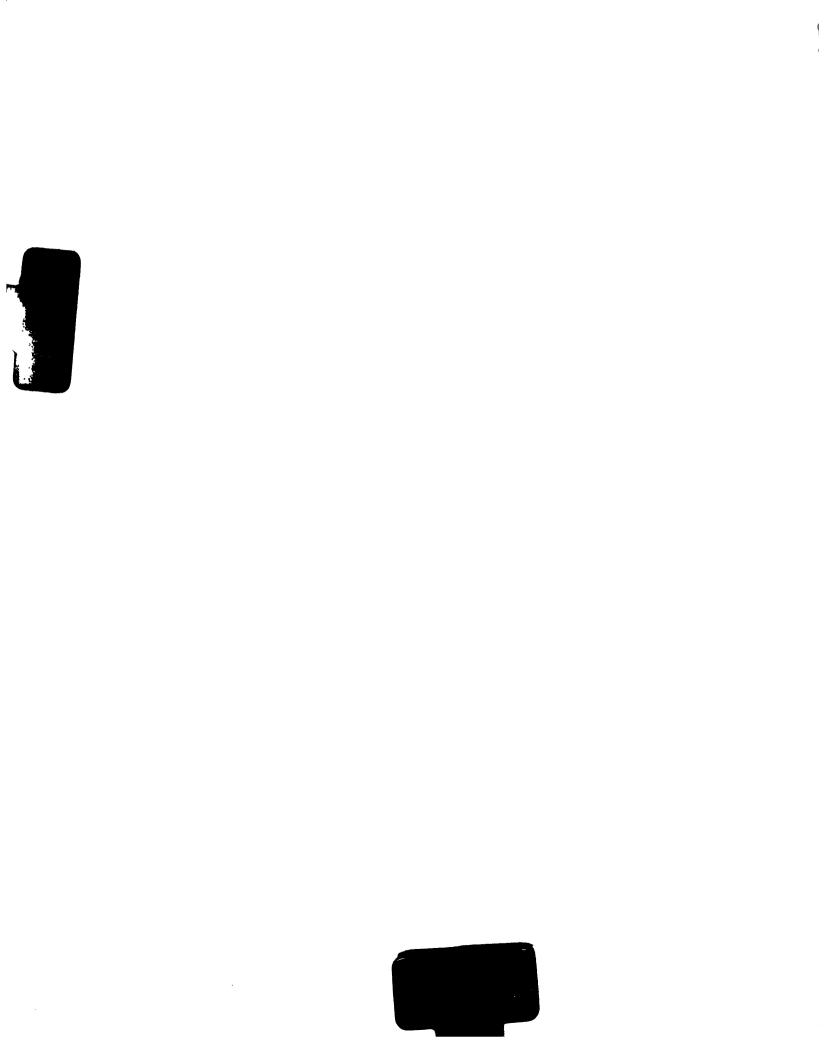
Centro leteramericano de Documentación e Información Auricola

3 MICA - CIDIA


ENERGIA EN EL MEDIO RURAL

Marcelo Jorge Pérez Olga Luciano López Pablo R. Jorge Mustonen

IICA E51 P438

DIAGNOSTICO Y ESTRATEGIA SECTORIAL AGROPECUARIA

Republica Dominicana SEA, JAD, IICA

4.04974.66

Contro Interamoricano da
Pocumentación e
Información Agricola
3 III/AIR 1995
IICA — CIDIA

ENERGIA EN EL MEDIO RURAL

Marcelo Jorge Pérez Olga Luciano Lòpez Pablo R. Jorge Mustonen

DIAGNOSTICO Y ESTRATEGIA SECTORIAL AGROPECUARIA

República Dominicana SEA, JAD, IICA 00008961

110A ESI P438

.

INDICE

1. DIAGNOSTICO	1
1.1 Oferta de Energía	1
1.1.1 Importación	7
1.1.2 Fuentes convencionales de energía: leña, carbón vegetal e hidroenergía	10
1.1.3 Fuentes no convencionales de energía	11
1.2 Consumo de Energía	14
1.2.1 Consumo por Sectores Económicos	14
1.2.1.1 Consumo en el Sector Agropecuario	14
1.2.2 Consumo por Tipo de Energético	18
1.3 Formas de Utilización de la Energía en el Medio Rural	23
1.3.1 Agricultura	24
1.3.2 Industria Rural	25
1.3.2.1 Caña de azúcar	25
1.3.2.2 Café y Cacao	25
1.3.2.3 Arroz	26
1.3.2.4 Procesamiento de Otros Alimentos	26
1.3.3 Hogares Rurales	28
1.3.3.1 Tipos de energéticos utilizados para la iluminación, la cocción de alimentos y otros usos en los hogares rurales	29
	29
1 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	30
	30
1.3.3.3 Volumen de consumo energético del Sector Doméstico	32
1.3.3.3.1 Iluminación y otros usos	32

Į,	
I.	
I	
Į	
Į	
Į	
1	
Į	
1	
! †	
⊦r 	
T	
94	
-4	
17 12	
r1	
ei Fi	

1.3.3.3.2 Cocción de alimentos y otros usos	32
1.3.3.4 Consumo Doméstico Per Cápita	33
1.3.4 Impactos Ecológicos por el uso de la leña y el carbón vegetal	35
1.4 Demanda de Energía	40
1.4.1 Proyecciones de la Demanda de Energía	40
1.4.1.1 Demanda de Energía Rural	40
1.4.2 Demanda Eléctrica	42
1.4.2.1 Demanda Eléctrica Rural	42
1.4.2.1.1 Características de la Demanda Eléctrica Rural	44
1.4.2.1.2 Demanda Eléctrica para el Bombeo de Ag uas de Riego	46
2. INVENTARIO DE PROGRAMAS Y PROYECTOS	47
2.1 Fincas de Energía	47
2.1.1 Introducción	47
2.1.2 Investigaciones y proyectos de la CDE	48
2.1.2.1 Proyecto Planta Dendrotérmica de Pedernales .	48
2.1.2.2 Proyecto Planta de Cumayasa	48
2.1.3 Programas de la Comisión Nacional de Política Energética (COENER)	49
2.1.4 Proyectos del Plan Sierra	49
2.1.4.1 Proyecto La Celestina	50
2.1.5 Programas de Organizaciones Internacionales	51
2.1.5.1 Plan de Acción Forestal de los Trópicos (PAFT)	51
2.1.5.2 Plan de Manejo del Bosque Seco	51
2.1.5.3 Programa de la Cooperación Técnica Española .	52
2.1.5.4 Programas y Proyectos de las ONG	53
2 2 Pasiduos Vagatales	53

7

i 🚤

| -| -

| •** | •**

. -•

.

••

٠,

· ¬

. --

· •

· •

1

4

		1
		• .
		•
		-
		-
		_
		-

2.2.1 Introducción	53
2.2.2 Propuesta de Caliqua, S.A	54
2.2.3 Proyectos de Fabricación de Briquetas	54
2.2.3.1 Briquetas Dominicanas	54
2.3 Bagazo y Barbojo de la Caña de Azúcar	55
2.3.1 Introducción	55
2.3.2 Proyectos de la CDE	55
2.3.3 Proyectos del CEA	56
2.3.4 Utilización del Bagazo en Turbinas de Gas	56
2.4 Energía Solar	58
2.4.1 Introducción	58
2.4.2 Programa de Aprovechamiento de la Energía Solar	
(PAES) del INDOTEC	59
	60
calentadores	60 60
calentadores	
2.4.2.1 Calacteristical Control Control	60
calentadores	60 61
calentadores	60 61 61
calentadores	60 61 61 62
calentadores	60 61 61 62 62
calentadores	60 61 61 62 62 62
calentadores	60 61 61 62 62 62 62
calentadores	60 61 61 62 62 62 62 63
calentadores	60 61 61 62 62 62 62 63 63
calentadores	60 61 61 62 62 62 63 63 63

ı				1
				1

2.5.1 Introducción	64
2.5.2 Proyectos de COENER	64
2.5.3 Investigaciones de EMLURB	65
 2.6 Proyectos de Energía Eólica	65
2.6.1 Introducción	65
2.6.2 Proyectos de COENER	65
2.6.3 Proyectos de CENATA	65
2.6.4 Proyectos de INAPA	66
 2.7 Plan de Electrificación Rural	66
 2.8 Pequeñas Centrales Hidroeléctricas (PCH)	67
3. ESTRATEGIAS ENERGETICAS Y SUGERENCIAS PARA LA ELABORACION DE POLITICAS ENERGETICAS	70
3.1 Introducción	70
3.2 Mejoramiento de la Eficiencia Energética	71
3.2.1 Impuestos y subsidios	74
3.3 Incremento de los suministros energéticos	75
3.3.1 Recursos Energéticos Renovables	75
3.4 Energía y Desarrollo	80
 4. RESUMEN	83
4.1 Diagnóstico	83
4.2 Inventario de Programas y Proyectos	88
4.3 Políticas	89
4.3.1 Estrategia Global de Desarrollo	89
4.3.2 Estrategia Global del Sector Energético	89
4.3.3 Políticas	89
4.3.4 Matriz de Políticas	90
5. BIBLIOGRAFIA	91

1. DIAGNOSTICO

La República Dominicana comparte con la República de Haití la Isla de Santo Domingo y su superficie alcanza alrededor de 48,000 kilómetros cuadrados. Se estima que la población dominicana es de unos 7 millones de habitantes, de los cuales el 41% reside en las zonas rurales.

Las necesidades energéticas del país se satisfacen en un 24.9% con energéticos de origen vegetal (como leña, bagazo y carbón vegetal), en un 70.4% con derivados del petróleo, en un 0.5% con carbón mineral y en un 4.2% con recursos hidroenergéticos. Las importaciones de petróleo crudo y sus derivados representaron, en los últimos cinco años de la década del ochenta, cerca del 25% de las importaciones totales.

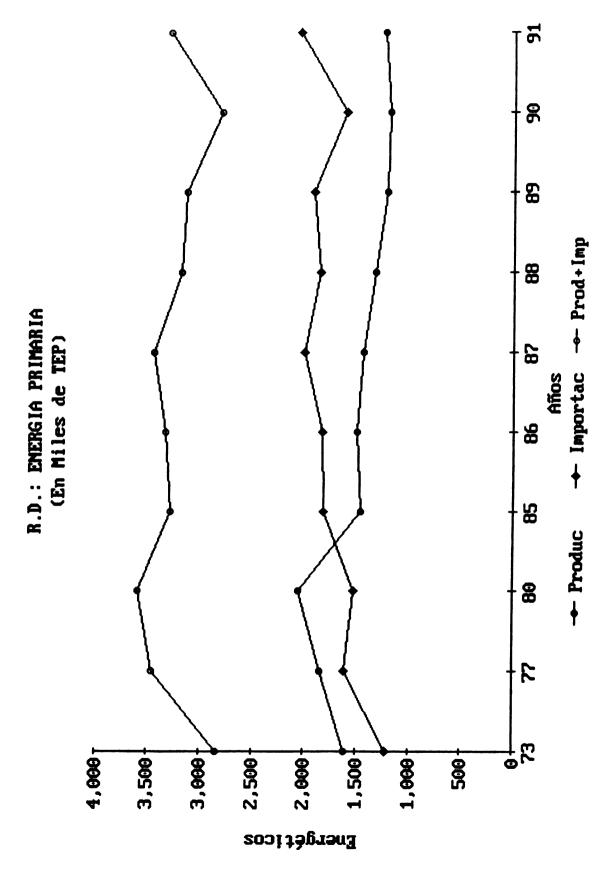
1.1 Oferta de Energía

La Oferta Total de Energía es la cantidad de energía disponible para ser consumida por el país. Es la suma algebraica de la Producción, la Importación y la Variación de Inventarios.

La Producción es la energía primaria que se obtiene de los yacimientos mineros, los recursos forestales, los vegetales y los animales y del potencial hidráulico.

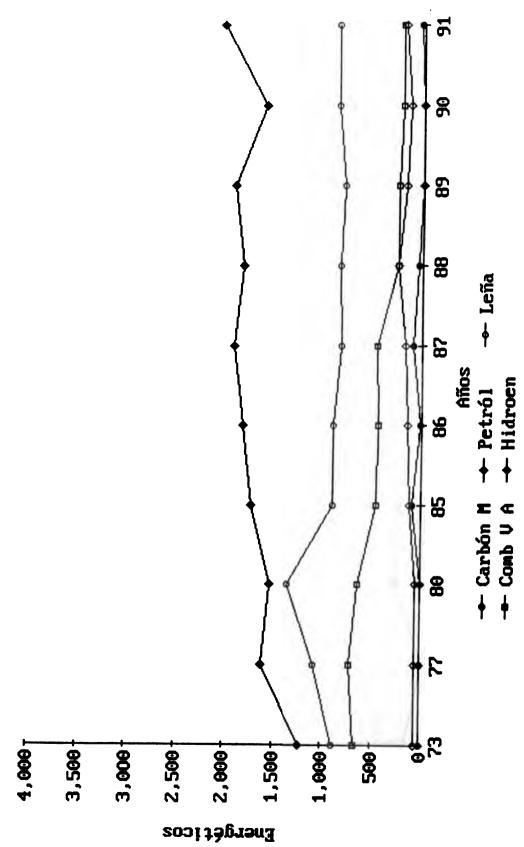
Los Cuadros Nos. 1 y 2 y los Gráficos Nos. 1, 2, 3 y 4 presentan la Oferta de Energía Primaria y Secundaria para los años 1973, 1977, 1980 y 1985-1991.

La oferta de energía primaria en 1991: 3.301 millones de TEP equivalentes a 23.8 millones de barriles de petróleo (Cuadro No. 1) muestra una participación de un 37.7% para la energía nacional y de un 62.3% para la energía importada. Para 1991, la oferta de

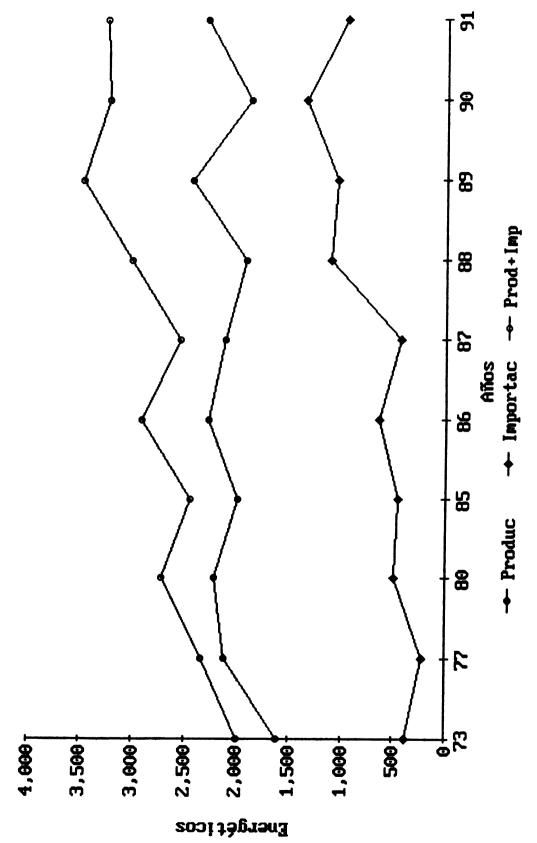

1
1
1

energía secundaria: 3.256 millones de TEP (Cuadro No. 2) muestra una participación de un 70.6% para la energía nacional y de un 29.4% para la energía importada (6.9 millones de barriles de petróleo equivalente). Se observa entre los años 1988 y 1990 una disminución de la energía primaria de hasta el 20.5% con relación al año 1987. A partir del año 1988 se produjeron aumentos en la energía secundaria de hasta el 36.4% en relación al año 1987.

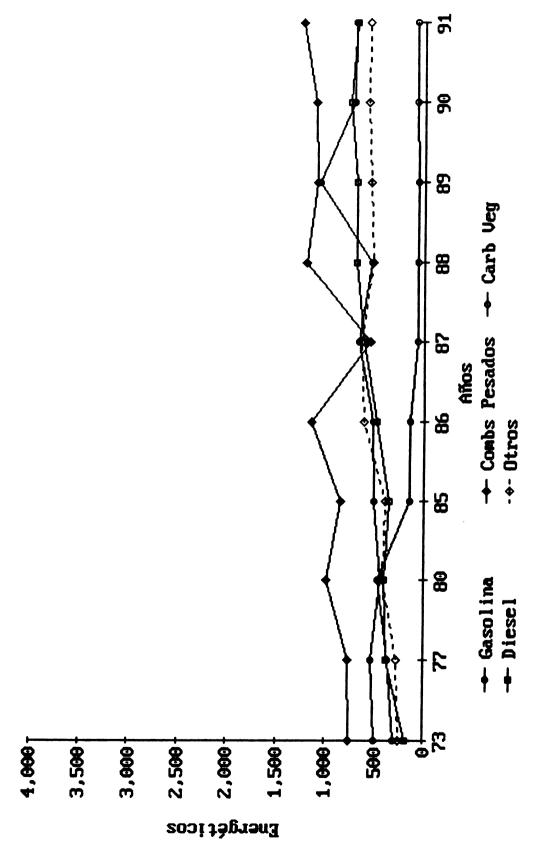
Estas tendencias podrían explicarse por las disminuciones progresivas de la producción de combustibles de origen vegetal (bagazo de la caña, en correspondencia con la disminución de la producción de azúcar de caña), el estancamiento de la leña a partir del año 1987 y la importación de derivados del petróleo.


ſ	
L	
L	
- T	
Ĺ	
Ţ	
L ,	
r	
L.	
1	
-	
1	
Į.	
•	
L	
•	
i	
Ţ	
_	
1	
1	
I.	
]	
7	
1	
1	
.	
1	
7	
ď	

٦


	1
	1
	1
	I
	i
	1
	1
	i
·	
	u.
	•
	ť

R.D.: ENERGIA PRIMARIA (En Miles de TEP)


Ţ
[
[
Ĺ
į. F
ŀ
[

R.D.: ENERGIA SECUNDARIA (En Miles de TEP)

1
1

R.D.: ENERGIA SECUNDARIA (En Miles de TEP)

		7	
		4	
		L	
		Ţ	
		•	
		I	ı
		•	
		Ĺ	ı
		1	
		i.	
		1	
		L	
		1	
			ı
		1	
		ı	
		i	
		1	
			1
		!	
		.]	
		1	
		**	
		_	
		_	
		11	
		•	
		,	
		¥	

1.1.1 Importación

La Importación es la cantidad de energía primaria y secundaria proveniente del exterior que ingresa al país para formar parte de la oferta.

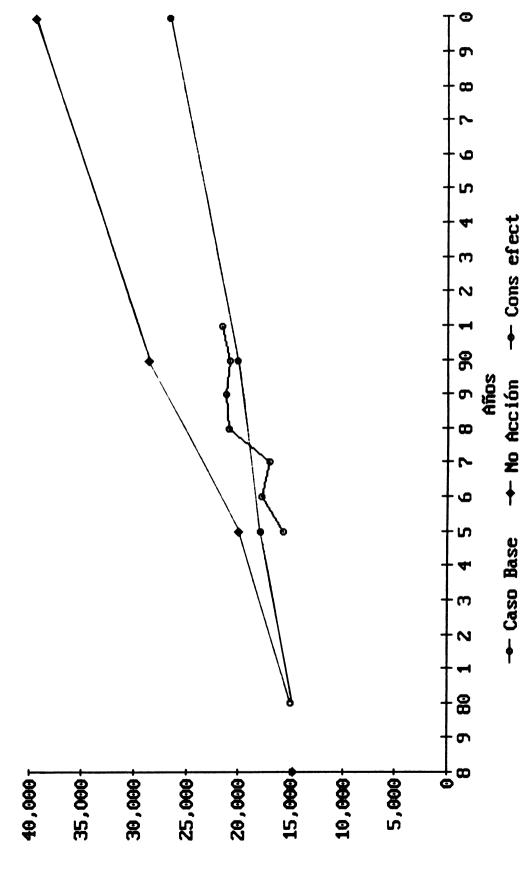
El petróleo y sus derivados son las fuentes de energía más importantes que la República Dominicana obtiene del exterior debido a que no es un país productor de hidrocarburos y al hecho de que las tecnologías creadas por el desarrollo económico en los últimos setenta años tienen un uso intensivo de estos recursos energéticos. De manera que el valor de estas importaciones representa niveles importantes en la Balanza Comercial de la República Dominicana.

En el Cuadro No. 3 se observa el volumen y el valor de las importaciones de petróleo y sus derivados. Las importaciones de petróleo crudo no sufrieron mayores variaciones durante el período 1987-1991 debido a la rígida estructura existente para su refinamiento. En correspondencia con la demanda, el volumen importado de los derivados se incrementó significativamente a partir de 1988. De manera que la oferta de petróleo y sus derivados pasó de 12.8 millones de barriles en 1973 a 14.6 millones de barriles en 1980 y de 21.4 millones de barriles en 1988 a 23.2 millones de barriles en 1991.

El valor de dichas importaciones, durante el período 1973-1980, fue drásticamente afectado por las tres fuertes alzas de precios que impactaron la economía nacional y el resto del mundo, ocurridas en 1973-74, en 1978-79 y en 1979-80.

	1
	1
	1
	1
	1
•	1
	1
	1
	1
	1
	1
]
	J
	1

Las importaciones de petróleo crudo y sus derivados refinados representaron, en los últimos cinco años de la década del ochenta, cerca del 25% de las importaciones totales (Cuadro No. 3A).


En 1980, la Comisión Nacional de Política Energética y Energy Development International (COENER-EDI) realizaron proyecciones de la demanda de petróleo en el país [9; 82]¹. Presentaron, por un lado, cuál sería la demanda de petróleo en una situación "base"; y, por otro lado, esa misma demanda en una situación en que el Gobierno no tomara medidas para sustituir el uso del petróleo. Esta última situación la llamaron "caso de no acción".

Los resultados de estas proyecciones se muestran en el Gráfico No. 4-A, en que también se presenta el consumo efectivo de petróleo entre 1985 y 1991, de acuerdo a datos publicados por la COENER. Se observa que las importaciones se han mantenido alrededor del escenario "base". Recordando los ligeros incrementos de 1988, 1989 y 1990 versus las crisis energéticas que se generaron, se aprecia la importancia de tomar medidas para mantener las importaciones de petróleo y sus derivados por debajo de 25 millones de barriles al año.

Los números entre corchetes indican la fuente, según su número de orden, en la Bibliografía que aparece al final del documento; y a continuación del punto y coma, se presenta la página donde se encuentra la cita.

I
1
i
1
i
1
1
•
1
1
1
1
1
1
1
1
1
•

REP. DOM.: DEMANDA DE PETROLEO (En Miles de BEP)

	1

1.1.2 Fuentes convencionales de energía: leña, carbón vegetal e hidroenergía

El Gráfico No. 5 y el Cuadro No. 4 presentan las series cronológicas de Energía Primaria correspondientes a:

- Leña
- Otros Combustibles Vegetales y Animales, en valores absolutos y en porcentajes' con respecto a la Oferta de Energía Primaria.

El Gráfico No. 6 y el Cuadro No. 5 presentan las series cronológicas de Energía Secundaria y de carbón vegetal, en valores absolutos y en porcentajes con respecto a la Oferta de Energía Secundaria.

Para 1991, la Oferta de Agroenergía Primaria (leña y biomasa) había descendido al 32% de la Oferta Total y los valores absolutos se mantenían relativamente constantes alrededor de los 1.06 millones de TEP (aproximadamente 7.7 millones de barriles equivalentes de petróleo).

Para ese mismo año, la Oferta de Agroenergía Secundaria (carbón vegetal) había descendido al 2.3% de la Oferta Total de Energía Secundaria y los valores absolutos se mantenían relativamente constantes alrededor de 0.075 millones de TEP (aproximadamente 0.54 millones de barriles equivalentes de petróleo).

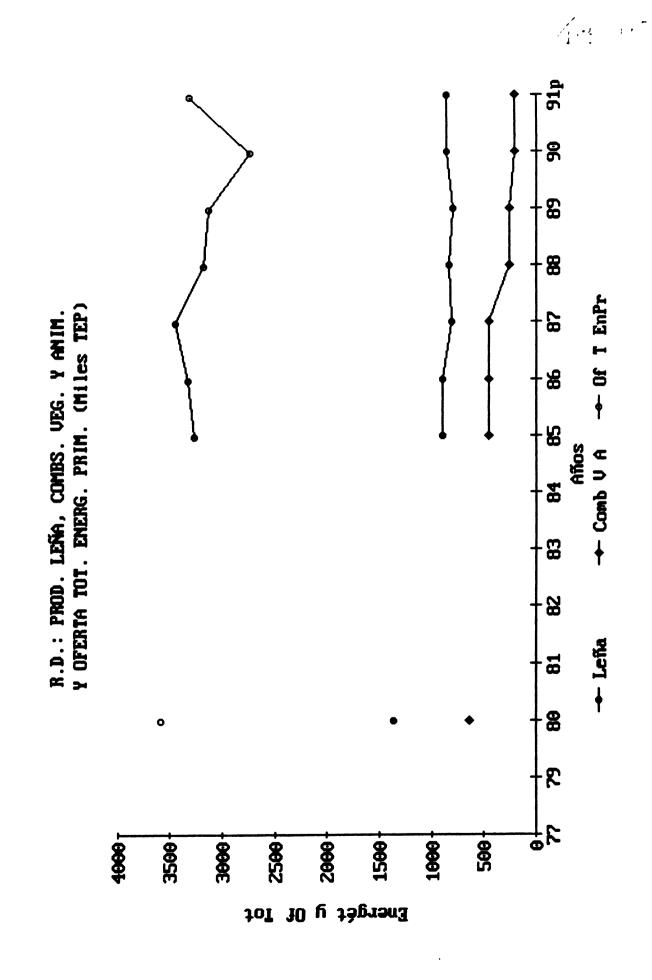
² Los gráficos (5 y 6) muestran solamente los valores absolutos, mientras que los cuadros (4 y 5) presentan tanto los valores absolutos como los porcentajes.

7
•
_
The state of the s
· ·
.
♣.
T
"
.
—
-
4
_
_
-
_
T .
.
_
•
<u> </u>
_
•
1
-
-
· · · · · · · · · · · · · · · · · · ·
-
_
T T
1
•
-
-
•
_
•
•
The state of the s
·
P.
_
•

El mercado de leña y carbón vegetal no es un mercado organizado. Las fuentes de abastecimiento de materia prima son los bosques secos y húmedos, al igual que los árboles y los arbustos de las áreas próximas a los núcleos de población y viviendas rurales.

A mediados de los años ochenta, la República Dominicana inicia proyectos de fincas de energía con el propósito de sembrar árboles para fines energéticos. Se preveía que estos programas formalizarían el mercado de leña y carbón y disminuirían significativamente la deforestación.

Por otra parte, según estimaciones realizadas en varios estudios, el país cuenta con 108 cuencas hidrográficas que tienen un potencial teórico de 50,000 millones de kilovatios hora (10° kWh).

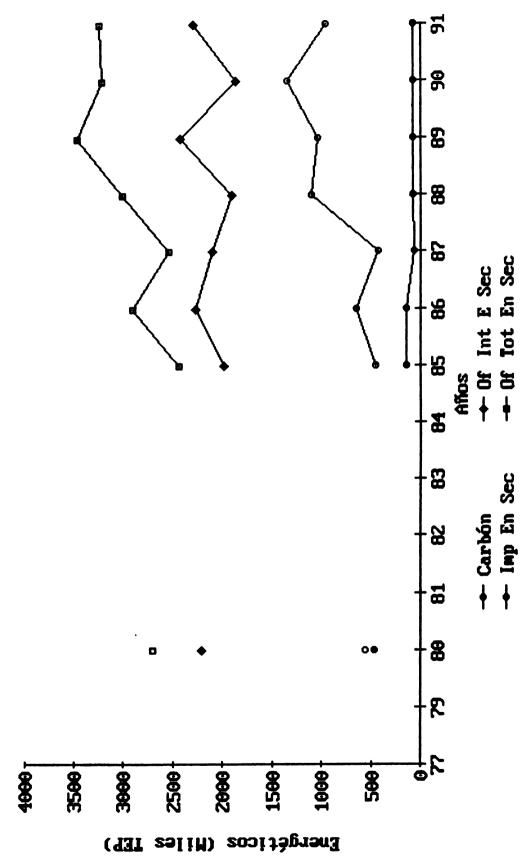

En 1991, la producción hidroeléctrica fue de unos 634 millones de kWh al año.

1.1.3 Fuentes no convencionales de energía

La energía solar se utiliza para el secado de la ropa y de algunos productos agrícolas (como el café, el arroz, etc) así como en el calentamiento de agua en el Sector Doméstico. El empleo del sol como energético es escaso en otros sectores.

La energía del viento se utiliza en el bombeo de agua para el consumo humano y para el ganado en las pequeñas comunidades rurales.

		7
		I
		1
		1
		1
		i
		1
		1
		1
		1
		1



1. 1 grape 1.51

I			
I I			
I.			
I			
I			
[
[
[
L			
- L			
I			
1			
•			
1			
•			
ļ			

Porcher Tra

I
I.
1
I
I
I
I
L
1
ľ
I.
I.
ľ
L
ľ
ſ
L
1

1.2 Consumo de Energía

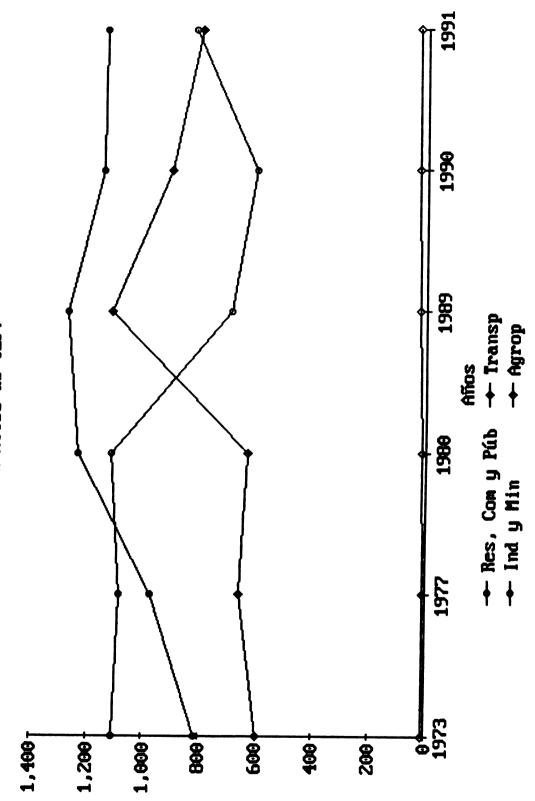
1.2.1 Consumo por Sectores Económicos

La importancia de los diferentes sectores económicos y del Sector Agropecuario puede medirse a través de su participación en el Consumo Final de Energía. Utilizando los Balances Energéticos elaborados por la Organización Latinoamericana de Energía (OLADE) [30] y COENER [6], [7] y [8], se elaboraron las series cronológicas correspondientes.

El primer lugar está ocupado por el Sector Residencial, Comercial y Público (Gráfico No. 7 y Cuadro No. 6). Su consumo aumenta desde un 32.3% en 1973 hasta un 41.0% del Consumo Total en 1991.

El Sector Transporte ocupa el segundo lugar, al aumentar su participación en el Consumo Total desde un 23.7% en 1973 a un 36.0% en 1989.

El consumo del Sector Industrial y Minero, que presentaba una importante participación de un 32.3% en 1973, ha disminuido a 22.3% en 1989.


1.2.1.1 Consumo en el Sector Agropecuario

El Sector Agropecuario ocupa el último lugar en el consumo total de energía, alcanzando un 0.67% en 1981 y disminuyendo su participación hasta 0.61% en 1985. En el Cuadro No. 7 también se aprecia que la participación de este sector es de 0.71% para el año de 1989 y de 0.95% para el año de 1991.

El Gráfico No. 8 muestra el Consumo Final del Sector Agropecuario y el Consumo Final Total. La insignificante posición

	1	
	}	l
]
		l
	ļ	
		į
	! !	!
		1
	(İ
		1
	!	1
	!	1
		į
	<u> </u>	
		1
	1	1
		ļ
}	}	ł

R.D.: CONSUMO FINAL POR SECTORES (En Miles de TEP)

Cons. Final

	1
	1
	•
. i	
	1
	į
	Ì
	1
	\
	1
	,
	1

91

8 88 R.D.: CONSUMO FINAL TOTAL DE ENERGIA Y CONSUMO FINAL DE ENERG EN SECT AGROP → Coms Fin Tot 82 Años æ - Cons Fin Agrop 84 8 22 81 **₽**8 25,0001 5,000 20,000 15,000 10,000 (Wiles BBL) Consumo

				L
				_
			•	
				_
				_
				I
				_
				_
				I
				_
				_
				_
				_
				1

del Sector Agropecuario se repite para otros países del Continente Americano, como se puede apreciar en el Cuadro No. 8. Asimismo, en un documento elaborado por G. Bazan y E. González que utiliza datos de OLADE, se señala que la participación del Consumo del Sector Agropecuario en América Latina y el Caribe -incluyendo Brasil y Méjico- es de un 4.7% para 1980 y de 4.2% para 1985; los autores proyectan para los años 2000 y 2010 participaciones de 4.1% y 3.7%, respectivamente [4].

Una mejor representación del consumo en el medio rural dominicano aparece en el estudio de COENER-EDI (1980) con el siguiente desglose:

1977 Consumo Final Energético	2,735,000 TEP	
1978 Consumo Final Energético	2,811,634 TEP	(100.0%)
Hogares Rurales + Agricultura:	537,493 TEP	(19.1%)
Leña	441,828 TEP	82.2%
Carbón Vegetal	70,222 TEP	13.1%
Deriv. Petróleo	23,407 TEP	4.4%
Electricidad (25GWh)	2,036 TEP	0.3%
		100.0%

El valor reportado en 1991 como Consumo del Sector Agropecuario, de 22,000 TEP, está compuesto en un 100% por diesel y gas oil [8].

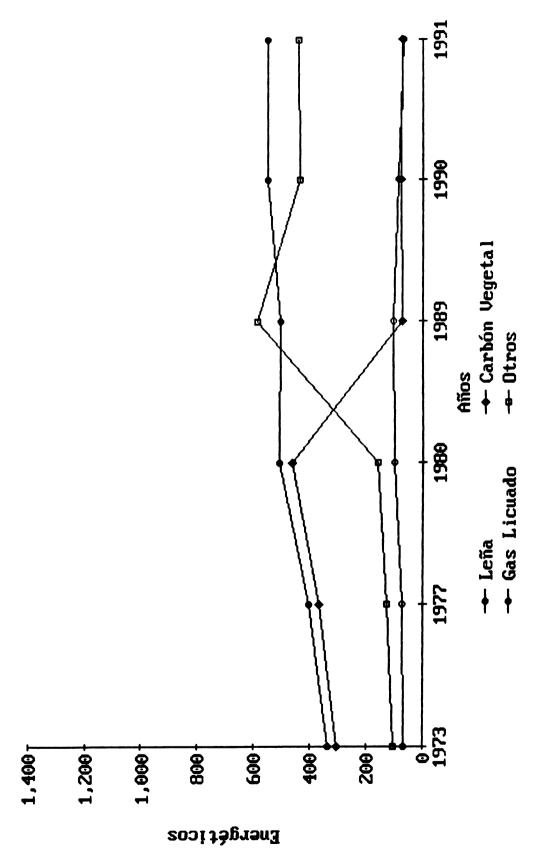
Esto induce a pensar que el consumo rural -en términos de leña, carbón y electricidad- está incluido en el Sector Residencial, Comercial y Público en los Balances Energéticos.

De todas maneras, unas 540,000 TEP (equivalentes a unos 4 millones de barriles de petróleo) son aproximadamente el consumo del medio rural.

L, 1

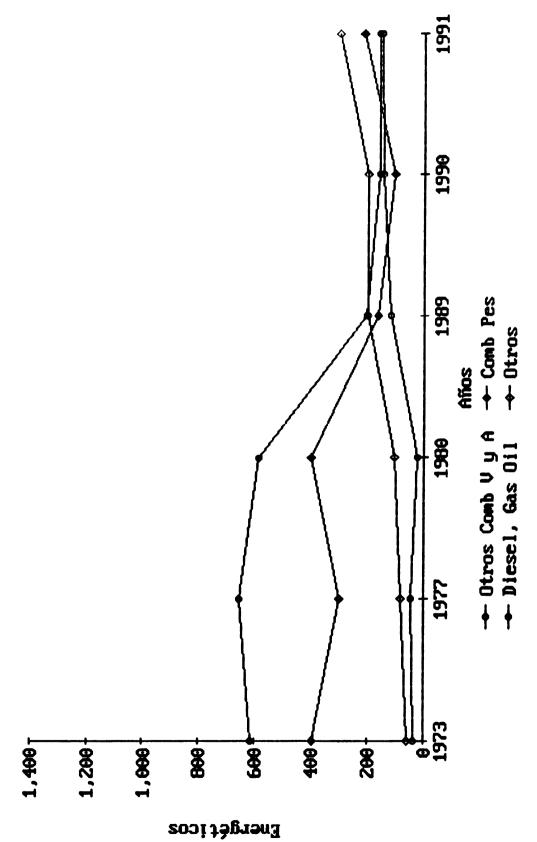
1.2.2 Consumo por Tipo de Energético

De acuerdo con el Cuadro No. 9 y los Gráficos Nos. 9, 10, 11 y 12, el diesel ocupa el tercer lugar en importancia en el consumo total de energía, y es uno de los combustibles de uso más diversificado ya que se emplea en la producción agropecuaria, la industria, el transporte y la generación de energía eléctrica [30], [6], [7] y [8].

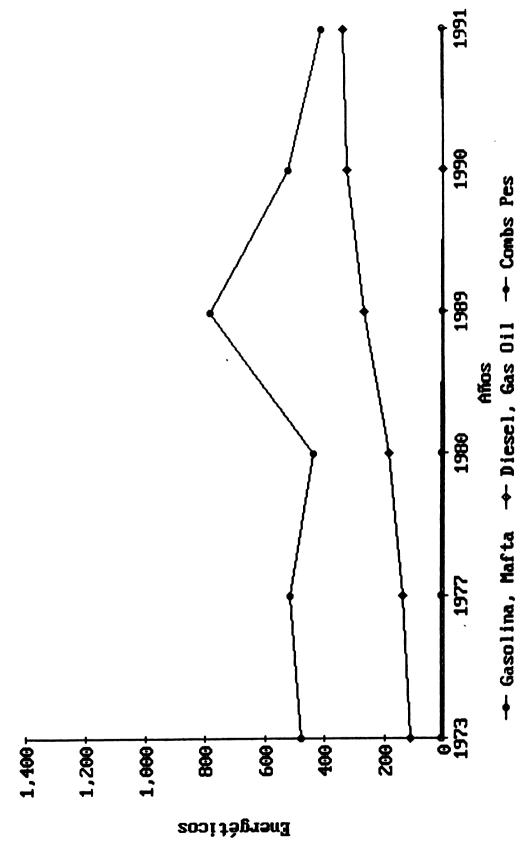

La utilización principal de la leña, del carbón vegetal y del GLP proviene del Sector Doméstico. Existen dos factores que incrementan de manera considerable el volumen consumido de la leña y el carbón en el Sector Residencial: su bajo poder calorífico y la baja eficiencia de los artefactos utilizados para su combustión.

El consumo del bagazo de la caña de azúcar como combustible representa el 30.0% del consumo del Sector Industrial en 1989. Este residuo se usa en las calderas de los ingenios.

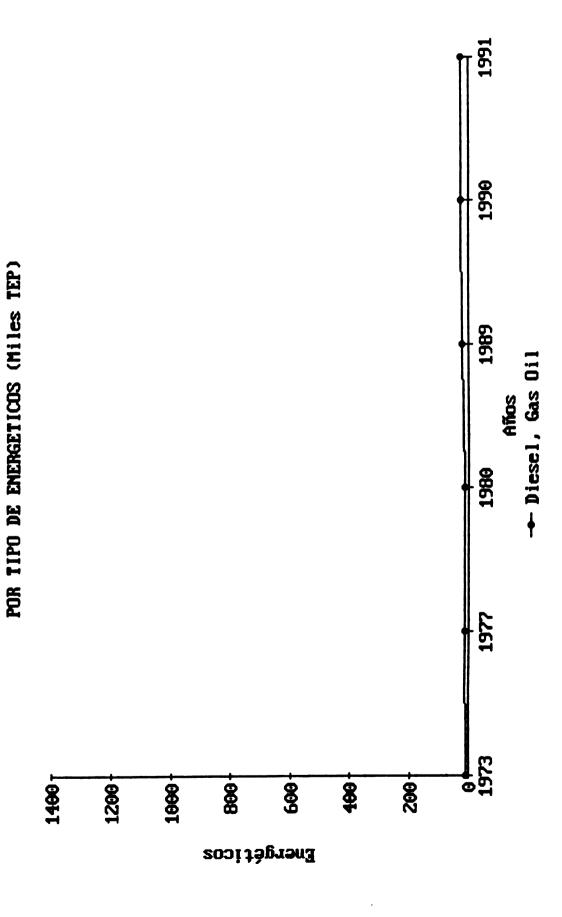
En la industria azucarera ocurre una situación similar a la del Sector Residencial, Comercial y Público, debido al bajo poder calorífico del bagazo de la caña de azúcar.


		ı
		!

R.D.: CONSUMO SECTOR RES, COM Y PUB POR TIPO DE ENERGETICOS (Miles TEP)


		l i
		!

R.D.: CONSUMO SECT INDUST Y MINERO POR TIPO DE ENERGETICOS (MILES TEP)



1
1
1
1
1
1
1
1
1
,
1

R.D.: CONSUMO DEL SECT TRANSPORTE POR TIPO DE ENERGETICOS (Miles TEP)

	[.
	[.
	L
	I.
	I.
	Ľ
	I.

R.D.: CONSUMO SECTOR AGROPECUARIO

1
· ·
1
1
1
1
1
1

1.3 Formas de Utilización de la Energía en el Medio Rural

Joy Dunkerley, William Ramsay, Lincoln Gordon y Elizabeth Cecelski señalan -en Estrategias Energéticas para los Países en Desarrollo, publicado originalmente en 1981- que: "En comunidades rurales la mayor parte de la energía se produce localmente a partir de mano de obra humana y animal, combustibles forestales y residuos [de] animales y de cultivos; [los] combustibles comerciales 'importados' (o sea, procedentes del exterior) se utilizan en escala limitada. Por lo común, los tradicionales combustibles son acopiados los núcleos por familiares, si bien las familias más ricas pueden comprar carbón vegetal, (...) [paquetes de] leña, y las pobres quizás tengan que pagar con servicios el privilegio de recoger leña o residuos en terrenos de propiedad privada" [16; 69].

Odum ha desarrollado modelos, que utilizan el lenguaje de flujo de energía, aplicados al análisis de ecosistemas en diferentes ambientes. Un caso pertinente es un modelo de interacción entre uso de la tierra, erosión y sedimentación en tierras de ladera en la zona de La Sierra, elaborado por G. Antonini en 1975.

En 1984, Dianne Rocheleau desarrolló un modelo de dos partes que provee un punto conceptual de partida para la construcción de un modelo de flujo de energía para sistemas de uso de la tierra en laderas, erosión en tierras altas y sedimentación aguas abajo. Presenta como ejemplos: un modelo para fincas (grandes y pequeñas) de café; un modelo para una finca ganadera y lechera en Pananao y

[.
[]
1
I
L
T
[
I
Į.
1
1
•

otro para la producción de yuca en una pequeña parcela. Todos los ejemplos están ubicados en el área del Plan Sierra [34].

1.3.1 Agricultura

Los datos sobre la producción agrícola y el uso de la energía en la agricultura utilizados en el Informe COENER-EDI se obtuvieron de la Oficina Nacional de Estadística (ONE), del Informe del Banco Mundial para la República Dominicana y de los hallazgos preliminares del estudio: Energía en el Sistema Alimenticio en la República Dominicana, realizado por Practical Concepts Inc (PCI) y el Laboratorio Nacional de Brookhaven [9; iii].

Para referencias futuras y dada la importancia de la agricultura bajo riego, se presentan en el Cuadro No. 10 los resultados de una evaluación de los insumos energéticos en la agricultura bajo riego en los Estados Unidos [3; 13].

	.
	L_v
	L
	L
	I
	_
	•
	L
	•
	L
	ſ
	L
	I
	-
	1
	1
	1
	1

1.3.2 Industria Rural

1.3.2.1 Caña de azúcar

Hasta finales de los años ochenta, el azúcar era el producto de exportación más importante del país. Los ingenios o plantas procesadoras se extienden a través de todas las áreas de cultivo de caña. En términos generales, estas plantas procesadoras son viejas pues fueron instaladas antes de que la energía estuviese disponible por redes eléctricas. Por tanto, los ingenios son autogeneradores ya que utilizan el bagazo de caña como combustible. La mayoría de estas plantas procesadoras están conectadas a la red eléctrica pero sólo emplean la energía eléctrica para el encendido y para fines suplementarios, particularmente en el tiempo muerto [12; II-34].

Sin embargo, los trabajadores de los ingenios viven en poblados cercanos a éstos, por lo que son suplidos por los generadores de las plantas procesadoras. Estos sistemas de distribución son antiguos, se encuentran muy por debajo de los niveles estandar y distribuyen la energía durante los seis o siete meses que operan los ingenios. En el tiempo restante, la fuente de energía eléctrica para estos sistemas de distribución es la conexión con la CDE [12; II-34].

1.3.2.2 Café y Cacao

Estos importantes productos se cultivan en las montañas, se colocan en sacos y son transportados a molinos centrales para su procesamiento [12; II-35].

1.3.2.3 Arroz

En los años ochenta, el arroz ocupa el segundo lugar después de la caña de azúcar en cuanto al área cultivada y es el producto que requiere más irrigación. Una gran parte del arroz es descascarado por pequeños molinos que funcionan en las áreas cercanas. Generalmente, éstos constan de una pequeña área de secado al sol y de un pequeño molino accionado por motores diesel. Los molinos más grandes utilizan paja para el proceso de secado. Si se quema la paja con el objetivo de producir calor para el secado, entonces se requiere energía eléctrica para accionar los abanicos, las transportadoras, etc. Cuando la energía eléctrica trifásica no está disponible, los molinos producen su propia energía con generación diesel [12; II-35].

El análisis de varios molinos arroja una demanda de 30 vatios/ha de campo de arroz, con un factor de carga anual de 0.5 [12; II-35].

La producción de arroz está intensificada en los suelos nivelados del Valle de San Juan y Yaque del Norte, en la planicie de la costa de El Seybo y La Altagracia y, especialmente, en los valles de Camú y Yuna. Las áreas bajo cultivo de arroz y las cargas potenciales de los molinos se presentan en el Cuadro No. 11 [12; II-35 y II-36].

1.3.2.4 Procesamiento de Otros Alimentos

Esta categoría incluye pequeñas factorías de queso, algunas plantas de procesamiento de coco (copra), plantas de dulces, etc. esparcidas a través del país. En general, sus cargas son

,
,
1
3
1
ſ
•
1
•
-

suficientemente pequeñas y por ello se incluyen como parte de la carga eléctrica comercial [12; II-36].

_
<u>.</u>
,
1
1
1
1
1
l
1
l
ı
l
'

1.3.3 Hogares Rurales

Para la preparación de los datos sobre el consumo de los hogares rurales, el Estudio de COENER-EDI obtuvo informaciones de la encuesta del Banco Central, de la CDE, y de la encuesta sobre el uso de energía en los hogares llevada a cabo por la PCI. Esta encuesta efectuada en 1979 cubrió más de 900 hogares rurales ubicados -tanto en fincas agrícolas como en otro tipo de fincas- en tres regiones del país [9; 46].

"Los patrones de uso de energía en los hogares rurales son muy diferentes a los patrones de uso de energía en los hogares urbanos." La leña y el carbón vegetal "son las fuentes predominantes de energía en los hogares rurales" debido a que pueden obtenerse gratuitamente "o a un costo muy reducido" [9; 46].

COENER-EDI señalan que, en términos de cantidades absolutas de energía, la cocción de alimentos es el uso final de energía más importante debido a la baja eficiencia en el uso de la leña y el carbón. Ahora bien, en términos de energía consumida, la cocción de una comida requiere mayor cantidad de leña que de gas licuado. Esta proporción puede ser de dos a uno o de cuatro a uno. autores determinaron que la cocción con leña participación de un 98% en toda la energía consumida en los hogares rurales. En contraste, determinaron que la cocción de alimentos con carbón vegetal en los hogares urbanos representa algo más del 67% del total del presupuesto energético de dichos hogares [9; 46].

La segunda posición en el uso de energía se destina al alumbrado y para el empleo de otros artefactos eléctricos. El

•
- 1
L (
-
•
[
•
•
[
L
L
r
-
r
L
-
L
•
•
•
•
1
1
1

alumbrado representa el 90% del consumo de electricidad en el 18% de los hogares rurales que tienen acceso a la electricidad; esto porque sólo un porcentaje muy pequeño de dichos hogares posee artefactos electrodomésticos. El alumbrado se realiza con kerosene en el resto de los hogares rurales [9; 46-47].

1.3.3.1 Tipos de energéticos utilizados para la iluminación, la cocción de alimentos y otros usos en los hogares rurales 1.3.3.1.1 Uso de energía eléctrica y kerosene

Las cifras del Censo de 1981 arrojaban que los hogares con energía eléctrica -procedente de la CDE o por autogeneración-constituían el 61% de la República Dominicana y que el 39% restante se iluminaba con kerosene. En cambio, sólo el 29% de los hogares de la zona rural tenía energía eléctrica [24; 21].

Tomando en cuenta la estratificación por ingresos del Censo citado (RD\$0-150, RD\$151-300, RD\$301-450, RD\$451-600, RD\$601-1,050 y más de RD\$1,051), se determinó que el paso de un estrato a otro conllevaba un mayor porcentaje de hogares con energía eléctrica. En la zona rural se observa que para el nivel de ingreso de RD\$0-150, este porcentaje es de un 23.6% y que para los niveles mayores de RD\$1,050 la participación de los hogares con energía eléctrica pasa a ser un 86.7%. (Cuadro No. 12). (IEPD-COENER, Cuadro No. 5.3) [24; 21].

En el caso de la Región del Cibao, tanto la zona rural como la zona urbana mostraron -con respecto a todo el país- la mayor participación de hogares con energía eléctrica [24; 21].

 Para la Región Sureste, el 23.7% de los hogares de la zona rural se iluminaba con energía eléctrica y el 76.3% no disponía de ésta. Asimismo, para el estrato de ingresos más bajo, sólo el 18.3% de los hogares de la zona rural de la Región Suroeste empleaba energía eléctrica [24; 21-22].

1.3.3.1.2 Uso de GLP, carbón y leña

El total de hogares censados ocupados en el año 1981 fue de 1,125,765; el 33% de éstos consumía carbón, el 32% utilizaba leña, el 29% GLP y el 6% no cocinaba o utilizaba otro tipo de energéticos. La distribución de la población dominicana para ese mismo año era de un 52% para la zona urbana y de un 48% para la zona rural [24; 22].

El uso de la leña y el carbón en las viviendas rurales fue significativamente superior al uso del GLP: esta participación fue de un 87% a un 95%. De igual manera, en la medida en que se incrementaba el ingreso disminuían dichos porcentajes. (Cuadro No. 13). (IEPD-COENER, Cuadro No. 5.6) [24; 23].

1.3.3.2 Disponibilidad de artefactos domésticos

A nivel nacional, un 38.2% de las viviendas disponía de nevera y la zona rural sólo participaba con un 11.5% mientras que la zona urbana presentaba un 51.8%. "Este exiguo porcentaje de viviendas en la zona rural que dispone de nevera se debe, por un lado, a su bajo nivel de electrificación, y por otro, a la gran concentración de la población en los más bajos niveles de ingreso. (Cuadro No. 14). (IEPD-COENER, Cuadro No. 5.7) [24; 24].

		[]
		[
		[
		[
		[
		[
		I
		[
		[

A nivel nacional, el Censo de 1981 mostró que el 31.7% de las viviendas disponía de estufa [24; 24].

Los resultados del Censo de 1981 mostraron que uno de los factores determinantes en la baja disponibilidad de estufas entre las regiones fue la oferta limitada y en ocasiones inexistente del GLP, especialmente en las zonas rurales [24; 29]. Así, en la región Sureste el porcentaje de viviendas que disponía de estufas era de 6.1%; en el Cibao era de un 10.2% y en la Región Suroeste de un 2.6%. En el Cuadro No. 14 -elaborado con los datos de IEPD-COENER- se observa esta situación.

"La radio, la T.V. y el estereo [48.4%, 10.4% y 4.0%], conjuntamente, constituyeron los artefactos de uso más extendido y representan uno de los elementos más importantes que influyen en la calidad de la vida de la población" [24; 29].

"Existe un porcentaje muy alto de planchas no eléctricas, con la ventaja de su bajo costo y de su larga duración. De ahí que este artefacto represente el más alto porcentaje entre los demás en la zona rural." Los resultados arrojaron que el 47% de los hogares de la zona rural disponía de plancha, mientras que los hogares de la zona urbana disponían de este artefacto en un 61% [24; 29].

Otro de los artefactos domésticos utilizados fue el abanico que era "accesible a la población de medianos ingresos que dispone de energía eléctrica". Sólo el 6.7% de los hogares rurales de todo el país poseía abanicos eléctricos; la Región del Cibao mostró una participación de 5.6% mientras que la Región Suroeste arrojó un porcentaje de 4.2% [24; 29].

		_ ۱-
		L 13
		L ,
		\.
		L 1
		L
		L
		ſ
		L
		ſ
		L
		T '
		L
		T '
		L
		_
		L
		_
		L
		_
		■
		['
		L
		L
		L
		_ 4
		ľ
		-

1.3.3.3 Volumen de consumo energético del Sector Doméstico

Las cifras analizadas proceden de los coeficientes ponderados del consumo mensual por vivienda; éstos están basados en la Encuesta Nacional de Ingresos y Gastos de las Familias (realizada por el Banco Central en 1976-1977) y en los datos del Censo de 1981 [24; 29].

El Censo de 1981 sólo tomó en cuenta el consumo del combustible principal del hogar, pero no registró el número de hogares que consumía simultáneamente más de un energético para la cocción de alimentos -como serían las combinaciones GLP y carbón, GLP y leña o carbón y leña [24; 30].

1.3.3.3.1 Iluminación y otros usos

Se estima que el consumo de energía eléctrica en todo el país en 1981 alcanzó los 738.4 millones de kWh; la zona urbana gastó el 95% y la zona rural gastó el 5% restante: 36.20 millones de kWh [24; 31]. (Cuadro No. 15). (IEPD-COENER, Cuadro No. 5.8).

1.3.3.3.2 Cocción de alimentos y otros usos

En la zona rural, el consumo de energía para la cocción de alimentos en 1981 fue de 1.92 millones de barriles equivalentes de petróleo (unos 0.27 millones de TEP). El 86.8% se consumió en forma de leña, el 11.4% en carbón y sólo el 1.8% en GLP. (Cuadro No. 16). (IEPD-COENER, Cuadro No. 5.12).

Se determinó que en la zona rural se consumía más energía para cocinar que en la zona urbana (1.92 millones de bep versus 1.17 millones de bep) a pesar de que la zona rural contaba con una población menor que la urbana "y de que la tradición y la

τ '	
L 1	
r	
L	
[
Г	
-	
[
[
L	
[
T	
T.	
7	
.	
1	
Į.	
•	
1	
1	
•	
1	

precariedad de recursos en el campo obligan a la ingestión por parte de muchos trabajadores agrícolas de sólo una comida fuerte al día. En realidad, es lógico que así sea por el tipo de energético que predomina en cada una de las zonas. En la zona rural predomina el uso de leña, a diferencia de la zona urbana, donde predomina el GLP y el carbón. Estos dos últimos combustibles son más eficientes que la leña debido al tipo de artefacto utilizado, de lo cual se deriva que los requerimientos de consumo energético sean mayores en la zona rural que en la zona urbana" [24; 35-36].

1.3.3.4 Consumo Doméstico Per Cápita

El consumo de combustibles implica siempre pérdidas; el nivel de éstas depende básicamente de la eficiencia del aparato que se utiliza y del energético empleado. Se presentan en el Cuadro No. 17 (IEPD-COENER, Cuadro No. 5.13) las estimaciones -realizadas por IEPD-COENER- de la energía final utilizada (que es la energía consumida por el aparato) y de la energía útil (que es el calor realmente aprovechado en las actividades normales del Sector Doméstico). De esta forma, se demuestra de qué manera el grado de eficiencia del aparato afecta tanto el consumo real de energía como el consumo efectivo de energía [24; 36].

Se presentan a continuación los coeficientes aplicados para la obtención del consumo de energía útil:

Combustible	Eficiencia del Artefacto
Leña	0.15
Kerosene	0.20
Carbón	0.30
GLP	0.60
Energía eléctrica	1.00

		[]
		•
		L
		r
		L .
		[
		[
		L'
		L'
		ľ

Se determinó que el consumo doméstico per cápita anual para todo el país iba desde 25.55 galones equivalentes de petróleo para el nivel de ingresos más bajo hasta 68.74 galones equivalentes de petróleo para el nivel de ingresos más alto, con un promedio de 27.14 galones equivalentes de petróleo por año [24; 36].

En el caso de la electricidad e iluminación, las diferencias eran muy fuertes en cuanto al nivel de ingresos. Así, el consumo por persona correspondiente al nivel de ingresos más alto fue 25 veces superior al consumo del nivel de ingresos más bajo: 41.44 galones equivalentes de petróleo anuales (gep/año) contra 1.61 gep/año [24; 36].

El Cuadro No. 18 (IEPD-COENER, Cuadro No. 5.14) muestra el consumo per cápita de energía final según regiones y zonas. Las diferencias geográficas se manifestaron otra vez. El más alto consumo por persona de energía correspondió a la zona rural con 31.54 gep/año.

Lo mismo sucedió con el consumo de energía para la cocción de alimentos: el menor consumo por persona (16.75 gep/año) correspondió a la zona urbana. Este resultado señalaba un uso extendido y predominante del combustible más eficiente: el GLP. El mayor consumo per cápita (29.89 gep/año) correspondió a la zona rural.

	b (1
	L.
	[
	[
	[
	-
	L
	[
	L
	L
	L
·	
	[

1.3.4 Impactos Ecológicos por el uso de la leña y el carbón vegetal

La leña y el carbón vegetal son los energéticos que se utilizan con más frecuencia en los hogares rurales -especialmente para la cocción de alimentos [24; 39].

El estudio realizado en 1985 por IEPD-COENER señala que el 86% de los hogares de las zonas rurales dominicanas utiliza leña para cocinar.

El uso de la leña como energético está estrechamente vinculado con el nivel de ingresos de las familias. En base a cifras nacionales, es predominante en el Suroeste (55%); en la Región del Cibao es de un 44%; en el Sureste participa con un 35% y apenas con un 4% en el Distrito Nacional.

Los consumidores de las zonas rurales no cuentan con los canales adecuados de distribución para el kerosene ni para el gas licuado de petróleo (GLP), ya que los intermediarios cobran entre un 100% y un 300% por encima de los precios de control, lo que dificulta la promoción del kerosene y del GLP como sustitutos de la leña en el medio rural [19].

Una encuesta efectuada por la COENER en el año de 1985 reveló que los grandes consumidores de leña eran los pobladores de bajos ingresos y las panaderías, las reposterías y las expendedoras de comida y frituras, así como el Consejo Estatal del Azúcar (CEA).

En 1985, existían unas 700 panaderías en Santo Domingo que representaban el 59.4% del total del país. Esos establecimientos consumían, a nivel nacional, unas 80,000 toneladas de leña,

[.,
[
[
[
[
[
Į.
Ĺ

correspondiendo a Santo Domingo el 53.2% de ese consumo. (COENER: Encuesta a panaderías. 1985) [9a; 8]. De acuerdo con el Balance Energético de 1985, este consumo corresponde al 3.2% de la producción de energía primaria mediante leña (893 x 10° TEP = 2,480.5 x 10° Toneladas de leña). [6]

La COENER determinó -mediante investigaciones realizadas en 1982- que el volumen total de madera para leña y carbón consumido en un año era de unos 1.57 millones de metros cúbicos. Para obtener esta madera sería necesario desmontar anualmente unas 100,000 hectáreas (1,600,000 tareas) de bosque nativo [24; 39].

Partiendo de una población o densidad promedio para el bosque seco nativo de unos 15 árboles por tarea y utilizando los índices anteriores, se estimaba que unos 24,000,000 de árboles se cortaban anualmente [24; 39].

De este total, unos 20 millones se emplean para la producción de leña y de carbón vegetal y son utilizados principalmente para consumo doméstico; los restantes 4 millones son destinados a otros usos [24; 39].

Según COENER, la foresta del país se reduce en 100,000 hectáreas (1,600,000 tareas) por año pero, como ocurre una regeneración de unas 20,000 hectáreas (320,000 tareas) por año, la reducción neta anual es de 80,000 hectáreas (1,280,000 tareas). COENER entendía (1982) que -de no llevar a cabo medidas que frenaran este ritmo de deforestación- la foresta nacional desaparecería en unos diez años pues la cubierta forestal fue

L		
[
L		
•		
L		
T		
L		
[
I.		
L		
I,		
ľ	•	
r		

estimada en un 18% del territorio: 871,956 hectáreas (13,951,296 tareas) de bosque [24; 39].

"De acuerdo a los resultados del experimento [consumo de energía para la cocción de alimentos frecuentes en el consumo diario de una familia promedio], si se usara la estufa lorena en todos los hogares que consumen leña y carbón, el ahorro anual posible de esos energéticos en la cocción de alimentos, en el período 1990-2000, oscilaría entre los 200 y 500 mil barriles equivalentes de petróleo", concluyen IEPD-COENER [24; 51].

Dicho "experimento sobre el consumo doméstico permitió determinar que una familia promedio de 5 miembros debería consumir diariamente en la cocción de alimentos alrededor de 2 libras de gas licuado de petróleo, equivalentes a 4 libras de carbón o 6 libras de leña. De acuerdo con estos resultados, si se usara la estufa lorena en todos los hogares que consumen leña y carbón, podría evitarse la tala promedio anual de 300 mil tareas de bosques durante el período 1990-2000" [24; 52].

El valor del consumo per cápita de COENER -aproximadamente 0.58m³/persona/año- es inferior al reportado en las investigaciones realizadas en 1985 por Santiago W. Bueno, Humberto A. Checo y Franklin A. Reynoso [5; 9] del Instituto Superior de Agricultura (ISA) en la sección de Inoa de San José de las Matas (0.94 m³/persona/año) y es inferior también al uso estimado de madera en Filipinas (0.75 m³/persona/año) [17]. Sin embargo, la estimación de la COENER es del mismo orden que la estimación presentada en el estudio del IEPD para las regiones Suroeste y Sureste de la

[,
L,
Ī
£ .
•

República Dominicana para la cocción de alimentos y otros usos en la zona rural.

	Consumo Tot anual vol m³/año	Poblac Rural	Núm de Familias	Consumo m³/pers/año	Gep/pers/ año
COENER	1,570,000	2,712,100	452,017	0.58	42.41
Inoa	1,370.6		242	0.94	69.02
Filipi	nas			0.75	55.00
IEPD:					
Re	epública Dominican egión Sureste egión Suroeste	a			29.89 44.06 43.15

Conviene recordar que, en la práctica, la mayor parte de la leña no se junta en los bosques sino que se obtiene de los árboles esparcidos a lo largo de las carreteras y en los campos, donde alternan con los cultivos agrícolas [16; 69].

En efecto, en el estudio sobre Inoa se evidencia que sólo un 50% de las familias recoge la leña en los bosques aledaños, recorriendo una distancia promedio de 2.2 km, con una frecuencia de búsqueda que puede ser desde diaria hasta semanal [5; 9].

Aunque sólo el 44% de la población dispone de tierra propia, ninguna familia se preocupa por mantener la reserva de combustible ni mucho menos por sembrar árboles. El costo inmediato de obtención de la leña se reduce al valor del tiempo empleado en la búsqueda. Lo elevado es el costo ecológico [5; 9].

En el año 1980, la producción anual de leña equivalía a un 33.3% del total de la energía primaria y secundaria. En 1985,

. había pasado a constituir un 24.0% y, recientemente, en 1991 se ha estimado en el orden del 20.2%.

Producción de Leña

λño	Miles de m³	Miles de Tm
1980	2,658	1,640
1981	2,717	1,677
1982	2,822	1,742
1983	2,908	1,795
1984	3,047	1,881
1985	4,019	2,481
1990*	12,733	7,859
1995*	19,314	11,920
2000*	25,895	15,982

* = Proyecciones del CEA.

Fuentes: COENER y CEA.

Para 1990, el consumo real indicado en el Balance de Energía fue de 688 x 10° TEP (1,911.1 x 10° Toneladas de leña), o sea, el 15% de la demanda estimada. Esto confirma el estudio de la Comisión Nacional Técnica Forestal (CONATEF), realizado en 1986, el cual revelaba que -ya para ese año- las zonas de abastecimiento de leña y carbón no satisfacían la demanda nacional [21a; 3 y 4].

[]
L
_ •
[
_
Ĺ
L .
L
•
L
L
Ľ
L
L
Ľ

1.4 Demanda de Energía

1.4.1 Proyecciones de la Demanda de Energía

El Cuadro No. 19 permite hacer una comparación entre los volumenes de energía estimados en el Informe de COENER-EDI y los valores reales del año 1990.

Se observan fuertes reducciones en lo que respecta al bagazo de caña y al carbón vegetal.

El Consumo Total para 1990 fue sólo el 78.8% del valor estimado.

1.4.1.1 Demanda de Energía Rural

El Estudio de COENER-EDI presumió un cambio gradual de leña a carbón vegetal para los hogares rurales. Por otra parte, proyectó que el uso de electricidad para iluminación sobrepasaría el doble del consumo para el año 2000, lo que suponía una reducción en el consumo del kerosene para estos fines. Se estimó que el 40% de los hogares rurales estarían dotados de electricidad en el año 2000. El Cuadro No. 20 muestra las proyecciones que aparecen en el estudio arriba mencionado.

Las proyecciones de la demanda de energía en la agricultura se basaron en las tendencias existentes en la producción de alimentos. Estas tendencias se extrajeron del estudio de la PCI citado anteriormente, de acuerdo con los datos de producción de la década de los setenta. "Al proyectar el consumo directo de combustible y la energía consumida indirectamente a través de fertilizantes, no se hizo ningún intento de alterar el patrón general de los insumos energéticos", señalan COENER-EDI. (Cuadro No. 21).

[.
Ĺ
[]
L
L
L '
L

La producción de azúcar era el cultivo dominante en los ochenta -tanto en términos de uso directo de combustible como de uso indirecto a través de fertilizantes. La participación de la agroindustria azucarera en el consumo directo de combustibles se estimó en un 83% del total de los requerimientos de energía directa para todos los cultivos principales; y la participación en el uso indirecto -a través de fertilizantes- se estimó en un 77%.

Los fertilizantes son uno de los insumos energéticos más importantes para la agricultura. En el año de 1978, la energía consumida a través de los fertilizantes fue seis veces la cantidad del combustible consumido directamente. (Cuadro No. 21).

El diesel era el combustible principal en cuanto a utilización directa de energéticos y se empleaba tanto para el bombeo de agua como para las operaciones de preparación del suelo. Se estimó que esta proporción podría mantenerse en el futuro.

1.4.1.2 Requerimientos de leña y carbón para las zonas rural y urbana

En el documento: <u>Recursos Naturales Renovables. Problemática</u>

Forestal en República <u>Dominicana</u>, Joaquín Muñoz Malo -ingeniero de

Montes de la compañía española Estudios y Proyectos <u>Técnicos</u>

Industriales, S. A. (EPTISA) - plantea una serie de consideraciones

sobre la demanda de energía en las zonas rural y urbana:

"Se estima que las necesidades en zonas rurales por habitante y año en países como República Dominicana, están del orden de 1 m^3 . Si se considera que la población actual es 7.5 millones de habitantes, de los cuales el 40% es población rural, las

	-
L,	
L .,	, ,
	ĺ
	١.
7	
L.	ı,
ſ	
<u> </u>	
_	
<u>.</u>	,
	•
	,
_	-
_	
-	
T	
_	•
1	
_	1
	Ì
_	
_	ŧ
T .	
_	i
-	٠
L L	
_	•
-	
[
	_
1	
	_
L L	
	-
L L	
_	-

necesidades de leña sería[n] 7,500,000 habitantes * 1 m^3 /habt. * 0.4 = 3,000,000 m^3 . [29; s. p.]

"Además[,] del 60% de la población restante[,] al menos una cuarta parte utiliza leña o carbón, por lo que hay que pensar en que las necesidades de leña están del orden de 4,500,000 m³ a 5,000,000 m³.

"Todo lo anterior nos lleva a pensar que en [la] República Dominicana son necesarios entre 3,300,000 m³ y 5,000,000 m³ de madera, (dependiendo del % de población urbana que utilice leñas y carbón), lo que si consideramos que con reforestaciones de crecimiento rápido y turno corto, tratados como monte bajo, con crecimientos que sean de 18 a 20 m³/Ha/año se necesitarían entre 200,000 Ha y 250,000 Ha, que habría que realizar en 6 años a lo sumo, ya que la situación empieza a ser dramática.

"A pesar de lo dicho, es lógico pensar que estas 200,000 ó 250,000 Ha pudieran reducirse sensiblemente, ya que entre los bosques tanto arbolados como de matorral, actualmente se pueden seguir extrayendo leñas, aunque se desconoce su cuantía" [29; s. p.].

1.4.2 Demanda Eléctrica

1.4.2.1 Demanda Eléctrica Rural

En el año de 1985, la Corporación Dominicana de Electricidad (CDE) preparó junto con Harza Engineering Company el Plan de Electrificación Rural (1986-2006), que incluía un pronóstico de la carga residencial, comercial e industrial [12].

		[.
		L,
		[
		נ נ
		ľ
		Ĺ
		L
		l

El Cuadro No. 22 resume la situación en 1983 y el pronóstico para los primeros cinco años del Plan [12; i].

estimó que de ejecutarse todos los proyectos de construcción de redes eléctricas propuestos y -en especial- la ampliación de los proyectos existentes, la demanda de electrificación rural compuesta básicamente por las residencial, comercial y de alumbrado público junto con la potencia eléctrica para el bombeo de agua de riego alcanzaría los 175,000 kW en un período de cinco años.

[
[
[
[
_
[.
L
L
L
L
Ĺ
Ĺ

1.4.2.1.1 Características de la Demanda Eléctrica Rural

Las cargas per cápita utilizadas en el pronóstico fueron las siguientes:

Sector/Región			Vatios/Persona		
	Norte y Ctra	l. Sur	Noroeste	Este	D. Nac.
Residencial	40	25	35	37	45
Comercial	6	2	5	7	16
Alumbrado	2	4	4	5	3
Total	48	31	44	49	64

Los factores de crecimiento regionales utilizados fueron: Población:

	Norte	Sur	Noroeste	Este	D. Nac.
Factor de Crecim.:					
Poblac. (1983-93)	1.12	1.20	1.15	1.13	1.48
% de Crec. Anual	1.14	1.84	1.41	1.23	4.00
Residencial y Comerc	cial:				
- Usuarios Exister	ntes 1983	-1993	1.40	3.4%	anual
	1993	-2003	1.40	3.4%	anual
- Nuevos Usuarios	1983	-1993	1.00		
	1993	-2003	2.00	7.2%	anual

Las características de la carga residencial -determinada mediante encuestas durante la preparación del Plan de Electrificación Rural- resultaron las siguientes para las diferentes regiones:

L		
L		
L		
L		
L		

Bombillas	de 60 W,	incand.:	[unidades	s) por	cliente
	Norte	Sur	Noroeste	Este	D. Nac.

2.9	3.2	3.6	3.3

Equipos electrodomésticos			Porcentaje de consumidore				
		Norte	Sur	Noroeste	Este	D.	Nac.
Nev	eras	47	44	69	48		
Tel	evisiones.	50	7	59	41		
Rad	lios	25	21	43	35		
Pla	nchas	39	39	43	35		
Est	ufas eléct.	0	0	0	0		

Los supuestos para la determinación de la tasa de crecimiento (3.4%) fueron los siguientes:

- La carga de iluminación crecerá paralelamente con el Producto Nacional Bruto (PNB).
- Ocurrirá la sustitución de bombillas incandescentes por bombillas fluorescentes.
- Se duplicará el uso de las neveras.
- La carga de radios y televisores permanecerá casi constante.
- Otras cargas se elevarán hasta el 25% de la carga por iluminación.
- No se considera el uso de electricidad para cocinar ni para calentar agua.

Por otra parte, un Plan de Electrificación Rural podría servir para combatir la deforestación si permite que el precio de la electricidad sea menor que el costo equivalente del carbón de leña

	L
	- [
	•
	L

utilizado para cocinar. Si se produjera -con este propósito- un cambio significativo en el empleo de estufas eléctricas, la demanda unitaria utilizada aumentaría drásticamente.

1.4.2.1.2 Demanda Eléctrica para el Bombeo de Aguas de Riego
La demanda de energía eléctrica para el bombeo de agua de
riego representa una parte importante de la carga futura estimada:
14.0%. [12]

Esta carga es denominada en la tarifa de la CDE como industrial de pequeña fuerza con una demanda por usuario mayor de 25 KVA, a pesar de que se desarrolla en las áreas rurales.

La CDE obtuvo del Instituto Nacional de Recursos Hidráulicos (INDRHI) y del Instituto Agrario Dominicano (IAD) la información básica para realizar las proyecciones de esta carga.

Se hicieron distinciones entre:

- el riego con aguas superficiales por gravedad;
- el riego con aguas superficiales por bombeo a poca altura;
- el riego por bombeo de aguas subterráneas.

Se asumió que todo el bombeo con grupos estacionarios de motores diesel se convertirá al bombeo eléctrico, salvo el bombeo a poca altura y por períodos cortos. Este último tipo de bombeo continuará ejecutándose por medio de conjuntos de bombas portátiles con motores de gasolina o diesel o movidas por tractores.

-
[
Γ
r ·
_
Ţ.
Γ.
•
[
T
_

- 2. INVENTARIO DE PROGRAMAS Y PROYECTOS
- 2.1 Fincas de Energía

2.1.1 Introducción

El concepto de "Fincas de Energía" implica el aprovechamiento de terrenos (generalmente marginales) con el fin de producir un combustible económico a partir de plantaciones de árboles de rápido crecimiento.

Estudios efectuados por la COENER, con el patrocinio de la AID, en mayo de 1980, concluyen en que la República Dominicana cuenta con unos 8.4 millones de tareas de tierras áridas y semiáridas disponibles para cultivos biomásicos que se podrían traducir en un potencial entre 200 y 1,400 MW de capacidad eléctrica instalada.

En base a estas conclusiones, la AID y la COENER recomendaron que se realizaran estudios separados para determinar el potencial existente en plantas menores de 1 MW y para combinar la producción de carbón de leña y electricidad, en vista de la alta demanda que acusan ambos.

También señalaron que "el mayor desafío en la implementación de plantas con cultivos biomásicos yace en organizar y motivar un gran número de trabajadores para plantar, cuidar y cosechar, esfuerzo que pertenece al dominio del desarrollo rural y comunitario".

Todos los estudios desarrollados sobre fincas energéticas coinciden en la necesidad de enfocar el aspecto social, involucrando a los campesinos en la producción de leña a través de

[
•	• • [
	• 1
To the second	•
• • • • • • • • • • • • • • • • • • •	•
	• [
	. !
	' -
	- 1
	•
	.
	-
	•
	•
	•
	. (
	r: 1
	- 1 L
	r ·•
	_
	L

asociaciones y grupos organizados. Tal es la propuesta contenida, por ejemplo, en el Estudio de Factibilidad preparado por la OEA-CDE-ONAPLAN en el 1986, para desarrollar una planta dendrotérmica asociada a una finca energética en Pedernales, en la región fronteriza de la República Dominicana.

2.1.2 Investigaciones y proyectos de la CDE

2.1.2.1 Proyecto Planta Dendrotérmica de Pedernales

En el 1985 la CDE y ONAPLAN, con la colaboración de la OEA, desarrollaron un Estudio de Factibilidad para el establecimiento de una finca energética que serviría para alimentar una planta de generación eléctrica de 3,000 kW de capacidad en Pedernales, en la Región Suroeste de la República Dominicana [14].

El proyecto comprendía la instalación de un vivero y de una plantación forestal de 2,400 hectáreas, con una inversión programada de US\$ 1.2 millones (1985). Se proponía la creación de una Compañía de Leña y el establecimiento de Cooperativas Rurales para integrar a los moradores al Plan de Manejo Forestal.

La planta tenía un costo de instalación estimado de US\$ 1,574/kW (1985) y el proyecto en conjunto tenía una tasa interna de retorno de 13.2% anual.

2.1.2.2 Proyecto Planta de Cumayasa

Dentro de los estudios de expansión de su capacidad de generación, la CDE contempló, a partir de los años ochenta, a través de la desaparecida Direccion de Energía No Convencional, la instalación de una planta de leña y carbón mineral de 50,000 kW de capacidad en Cumayasa, en la Región Este del país. Esta planta,

1
į
;
;
:
i
ł
j
. 1
. !
ı
- - 1
_
,

que al igual que la de Pedernales se basaría en una plantación forestal de gran extensión, tenía un costo estimado de US\$ 1,325/kW, sin incluir la plantación forestal, para la cual no se tienen estimados de costo. Ebasco y Sercitec prepararon un Estudio de Prefactibilidad de dicho proyecto.

2.1.3 Programas de la Comisión Nacional de Política Energética (COENER)

Uno de los programas del Proyecto de Conservación y Desarrollo de los Recursos Energéticos iniciado en 1980 por la COENER fue el Programa de Fincas de Energía; este programa abarcó lo siguiente:

- Financiamiento de 60 estudios de factibilidad para la instalación de fincas energéticas. Se implementaron 50 proyectos-piloto de red de fincas demostrativas.
- Con la participación de varias ONG y grupos religiosos y comunitarios se donó un fondo rotativo destinado a pequeñas fincas para agricultures pequeños y medianos.
- Se capacitaron 120 consultores en formulación y evaluación de proyectos de fincas energéticas.
- En el Subprograma de Estufas Lorena o estufas mejoradas se construyeron unas 1,600 estufas y se impartieron 112 cursos de adiestramiento para la construcción de las mismas. También se construyeron diez hornos de carbón vegetal con carbonización en 1986 y 1987.

2.1.4 Proyectos del Plan Sierra

El Plan Sierra es un proyecto iniciado en el 1979 que promueve un modelo de desarrollo en el cual se combinan la conservación, el

	r 1
	L ,
•	Ţ
	- r
	L .
	[
	ſ
	- 1
	L'
	L
	ľ
	١
	ľ

manejo de los bosques y el suelo y la atención a las necesidades de los pobladores.

Está ubicado en la parte norte central del país y abarca una extensión de 1,800 Km².

Entre los logros del Plan Sierra se incluye el programa de manejo forestal que está explotando 4,000 hectáreas de bosques que producen unos 4 mil metros cúbicos de madera por año y el desarrollo de áreas de carácter agroforestal.

2.1.4.1 Proyecto La Celestina

Uno de los proyectos principales del Plan Sierra lo constituye La Celestina.

Es un proyecto social de foresta con un plan de manejo para 25 años.

Se previó el autofinanciamiento a partir del 5to año.

Los costos previstos de inversión y de operación para el plan de manejo son de RD\$ 800,000/año (1985).

Para los primeros 7 años se estableció la plantación de 1,300 Ha. en áreas deforestadas a un costo de RD\$ 1,105,000.00 (1985).

El proyecto se dedica a la producción de madera, desglosada de la forma siguiente: 60% para postes, varas y leña, y 40% para aserrío.

Los resultados previstos en la operación del proyecto son los siguientes:

Ingresos anuales RD\$ 680,000

Gastos RD\$ 120,000

Déficit RD\$ 120,000

ľ
[
T
L
[
ľ
[-
Ī
•

El déficit sería cubierto por los excedentes estimados a partir del 5to año.

- 2.1.5 Programas de Organizaciones Internacionales
- 2.1.5.1 Plan de Acción Forestal de los Trópicos (PAFT)

El Gobierno Dominicano ha dado los pasos necesarios para la adopción del Plan de Acción Forestal de los Trópicos a ser desarrollado en 25 años, a través de cinco planes quinquenales que se basan en los objetivos siguientes:

- Manejo de los recursos forestales mediante el principio de rendimiento sostenido.
- Manejo de los terrenos forestales dentro de las cuencas hidrográficas.
- Producción de materia prima para industrias forestales.
- Protección de ecosistemas y de recursos biológicos escasos.

Dentro del PAFT se han identificado cuatro áreas prioritarias, que son las siguientes: reforestación, manejo forestal, ordenación de áreas silvestres protegidas y manejo integral de cuencas.

Dentro de los alcances del PAFT, CONATEF elaboró un Código Forestal que actualizaba la legislación vigente, resumiéndola en un solo estatuto jurídico.

2.1.5.2 Plan de Manejo del Bosque Seco

Este plan se ejecuta bajo la responsabilidad del Instituto Regional de Desarrollo del Suroeste (INDESUR), el cual cuenta con la ayuda de la Sociedad de Cooperación Alemana (GTZ) y se basa en un modelo de desarrollo rural y forestal que procura garantizar a

			[
			[
			<u> </u>
			1
			1
			•

la población un nivel de vida adecuado, así como la sustentabilidad del bosque seco.

En su primera etapa (1990-1992), el proyecto beneficiaba a 16 comunidades del Suroeste. En la actualidad está en proceso de expansión hacia unas 40 comunidades. En esta nueva etapa se busca la sustitución de la producción de carbón por una producción de cabra y ganado.

La GTZ dispuso de más de RD\$ 30 millones para la ampliación del proyecto, en vista de los logros de la primera etapa, y el Gobierno Dominicano a su vez aportará más de RD\$ 2 millones como contrapartida.

2.1.5.3 Programa de la Cooperación Técnica Española

Entre los proyectos que se ejecutan con asistencia española está el Proyecto Agroforestal y de Desarrollo Rural Integrado de Sabaneta-Los Gajitos, bajo la responsabilidad de la Dirección General Forestal y con el apoyo de la Agencia Española de Cooperación Internacional (AECI). Este proyecto está ubicado en la cuenca alimentadora del Embalse de Sabaneta y está destinado a su restauración agrohidrológica.

Se propone la reforestación de 14,600 hectáreas, la conservación de suelos en 7,200 hectáreas, la transformación en monte alto arbolado de 5,200 hectáreas y el mantenimiento de la vegetación actual en 18,400 hectáreas.

ı

Los costos totales suman RD\$ 60 millones (1991), de los cuales RD\$ 51 millones corresponden a la reforestación. La rentabilidad de estas acciones puede medirse en relación con la vida útil del

I
[
[
[
[
b .
[
֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֖֓֞֞֞֞֞֞֞
[
-

embalse: en las condiciones actuales se estima en 48 años y se prolongaría hasta los 300 años si se desarrollaran las medidas de restauración.

2.1.5.4 Programas y Proyectos de las ONG

Entre las organizaciones no gubernamentales que desarrollan trabajos relacionados con la agroenergía se cuentan: FLORESTA, ENDA-CARIBE, la Fundación para el Desarrollo de San José de Ocoa, el Consejo Dominicano de Promoción Comunitaria (CODOPROC), la Junta de Comunidades Pro-Desarrollo de Baní y otras.

2.2 Residuos Vegetales

2.2.1 Introducción

Las estimaciones de la Dirección de Energía No Convencional (DENC) de la CDE en 1981 señalaban que el potencial energético de los distintos residuos agrícolas evaluados en el país era de 726 MW. Entre esos residuos se incluían: el barbojo de caña, que representaba el 71% del potencial; la paja y la cascarilla de arroz, el bagazo de caña, la jícara de coco y las cáscaras de café, de maní y algodón.

En base a estas estimaciones la DENC planteó la instalación de seis grupos generadores entre 1983 y 1992 para una capacidad total de 260 MW.

Se consideró que las zonas con mayor producción de desperdicios con potencial energético eran: San Pedro de Macorís, Haina, Barahona y Puerto Plata, en el caso del barbojo; Sánchez, en el caso de la jícara de coco y La Vega, Valverde, Villa Riva y San Juan, en el caso de los residuos de arroz.

1
_ r ¹,
L,,
_],
_ r ''
L 1
•
L,
• 1
ſ
L
r
₽.
Ţ
L
f
_
ľ
•
L
r
_
•
1
(
L
_

2.2.2 Propuesta de Caliqua, S.A.

Con anterioridad a los estudios de la DENC, en el 1977, la CDE recibió una propuesta de la empresa Caliqua, S.A., de París, Francia, para instalar un complejo de producción de energía eléctrica mediante la reutilización de la energía producida con la incineración de los desperdicios urbanos por el procedimiento de pirofusión y con la combustión de las sobras de bagazo de caña.

El costo del proyecto era de US\$ 28.5 millones (1977). La oferta garantizaba 12 MW a la salida del transformador principal e incluía una subestación de 69 KV.

2.2.3 Proyectos de Fabricación de Briquetas

2.2.3.1 Briquetas Dominicanas

En la actualidad, la empresa Briquetas Dominicanas, localizada en San Juan de la Maguana, está desarrollando un proyecto de producción de combustibles sólidos mediante la utilización de las cáscaras de arroz y de café y desperdicios de cosechas.

La planta de la empresa está diseñada para producir alrededor de 70,000 quintales de briquetas al año y planea expandirse hasta un nivel de producción de 158,760 quintales (7,200 Tm) por año.

Aparte de su fácil manejo, las briquetas tienen mayor poder calorífico que el carbón común y su proceso de quemado y desintegración es más lento, y sólo producen humo en el encendido inicial.

El costo de adquisición es competitivo, ya que representa aproximadamente un 75% del del carbón vegetal convencional.

[,
- 1
•
r
ſ
•
Ī
L
T '
h
•
[

2.3 Bagazo y Barbojo de la Caña de Azúcar

2.3.1 Introducción

El bagazo de la caña de azúcar es un combustible de uso extendido en la República Dominicana en la industria azucarera de propiedad pública y privada. Ha representado aproximadamente el 2% de la generación de electricidad del país. Además de suplir la demanda de los ingenios, la industria azucarera vendía un pequeño excedente a la Corporación Dominicana de Electricidad hasta los años setenta.

Basados en esa experiencia y con el fin de aprovechar al máximo los recursos de la industria azucarera, la CDE y el CEA se plantearon, a mediados de los años ochenta, la instalación de unidades de generación de electricidad para aprovechar el barbojo y el bagazo de la caña de azúcar en mayor escala.

El barbojo es el recurso energético representado por la vegetación seca de la caña de azúcar, que queda en el campo como desecho luego de haberse cortado la caña. El bagazo es el desecho que queda luego de la molienda de la caña.

2.3.2 Proyectos de la CDE

La disponibilidad de barbojo y bagazo en los ingenios administrados por el CEA, en la Región Este y en la Región Sur decidió a la CDE a formular los proyectos de generación siguientes:

a. Una planta de unos 33,000 kW de capacidad en San Pedro de Macorís, la cual quemaría barbojo y fuel oil. Finalmente, esta planta, contratada con la compañía Mitsubishi, se instaló como una planta convencional que trabaja solamente con fuel oil.

		[
		•	-
		- [-
		[•
		_	
			•
			_
		[
			L
			_
			L
		1	L
		ľ	 L
			, - L
			 L
			- r -
		1	-
		•	•

b. Una planta de unos 45,000 kW de capacidad en Barahona, que trabajará con bagazo y carbón. Esta planta, actualmente en construcción, y cuya entrada en operación está prevista para el 1993, tenía un costo de instalación de unos US\$ 1,383/KW (1985).

2.3.3 Proyectos del CEA

Entre las distintas opciones estudiadas, el CEA priorizó los proyectos Boca Chica y Río Haina, los cuales quemarían bagazo y carbón, con una capacidad de generación de unos 45,000 kW y a un costo de unos US\$ 1,336/kW (1985).

2.3.4 Utilización del Bagazo en Turbinas de Gas

La Aerospace Research Corporation de Roanoke, Virginia, Estados Unidos, inició en 1980 un programa para utilizar combustibles biomásicos en turbinas de gas. Las investigaciones concluyeron con la construcción e instalación de un sistema de generación de potencia utilizando una turbina de gas Allison T-56 en Red Boiling Springs, Tennessee, que envió potencia con éxito y sin impactos ambientales negativos a la red de la Tennessee Valley Authority (TVA).

Los combustibles biomásicos que pueden alimentar el sistema provienen de desechos locales, tales como: bagazo de la caña o del sorgo dulce, cáscaras de nueces y de café, fibras y jícara de coco, cáscara de arroz, desechos de madera y astillas y cualquier material fibroso, solo o mezclado.

El sistema se considera ventajoso para los países importadores de combustibles fósiles como el nuestro, pues a la vez que ayuda al

 la generación de electricidad cerca de la fuente de producción y el uso de las facilidades de transmisión ya existentes para llevar la energía hacia los centros de consumo.

2.4 Energía Solar

2.4.1 Introducción

La tecnología solar puede ser empleada para producir energía tanto térmica como eléctrica. La República Dominicana se encuentra en una de las zonas de mayor insolación del mundo, entre los 17 y 20° de latitud norte y recibe una radiación solar anual del orden de 1,800 kWh/m².

Tradicionalmente, la población dominicana ha utilizado la energía del sol para el secado de ropa, carne y granos y para el calentamiento de agua.

En 1980 se firmó un convenio entre el BID y el Banco Central de la República Dominicana, a través del INDOTEC, con el que se inició el Programa de Aprovechamiento de la Energía Solar (PAES).

La CDE realizó estudios tendentes a desarrollar proyectos de energía solar en gran escala que se concretizaron en propuestas para el desarrollo de plantas solares en la Región Norte y en la Región Sur del país.

Distintas instituciones privadas han intervenido en el desarrollo de proyectos de energía solar en pequeña escala, destinados fundamentalmente al medio rural. Otras entidades privadas han formulado propuestas para instalar plantas de generación eléctrica de mediana y gran capacidad.

	. 1
	- μ
	ŗ
	ኒ
	į
	[
	Ĺ
	I

2.4.2 Programa de Aprovechamiento de la Energía Solar (PAES) del INDOTEC

Uno de los objetivos del PAES fue "el mejoramiento del abastecimiento de energía en áreas rurales aisladas, especialmente en los segmentos de población de menores ingresos, al tiempo que se estimula a la industria local para la producción de equipamientos solares."

El PAES comprendió dos sub-programas: el A y el B.

Dentro del subprograma A se desarrollaron las acciones siguientes:

- Una estación experimental de medición de la radiación solar.
- 2. Calentadores solares de agua.
- 3. Desalinizador solar de agua potable para uso en las zonas rurales.
- 4. Secador solar de granos para la producción agrícola.
- 5. Secador solar de pescado.
- 6. Planta solar térmica para el bombeo de agua.

Los resultados de las investigaciones del subprograma A permitieron llegar a las conclusiones siguientes:

- Santo Domingo recibe una radiación solar diaria equivalente a más de 5 kWh/m^2 .
- La tecnología desarrollada por el INDOTEC permitiría suplir toda la demanda residencial de agua caliente, alrededor de un 80% de la demanda comercial y 50% de la industrial, de manera confiable y económica, con un ahorro superior al 70% de las

_ 1.
_ }.
- !
-
-
_
_
_ '

importaciones petroleras que se atribuyen a calentamiento de agua.

2.4.2.1 Características técnico-económicas de los calentadores Se desarrollaron calentadores solares de agua termosifones con un colector de 1.8 m² y un tanque de 228 litros. Este sistema puede suplir la demanda de una familia de 5 miembros y opera con una eficiencia de captación de un 38%. El costo oscila entre RD\$ 1,400.00 y RD\$ 2,800.00 y se paga en 7 años. Tiene una vida útil de 15 años y ahorros totales superiores a los RD\$ 2,000.00 (a precios de 1987).

Sólo se han instalado 50 sistemas de gran tamaño para hoteles. Hasta 1987 se instalaban 90 unidades por mes de los sistemas de calentadores termosifones y un total de 5,000 calentadores.

2.4.2.2 Desalinizador de agua potable

En 1983 se inició el programa de desalinización para suplir de agua potable a comunidades rurales, mediante la técnica de destilación solar de efecto simple.

En 1985 se construyó un prototipo en Salinas de Puerto Hermoso, Municipio de Baní. Este modelo consiste en un desalinizador de concreto y vidrio tipo bandeja de 40 m^2 , alimentado directamente con aqua de mar.

Los costos fueron de RD\$ $97.00/m^2$ y de RD\$24.00/ m^2 , para materiales y mano de obra, respectivamente. El costo por litro de agua resultó en RD\$ 0.08 -valor competitivo en relación a otros sistemas.

2.4.2.3 Secadores de granos y pescado

Otro de los experimentos de INDOTEC consistió en un secador solar de granos, que se desarrolló a un costo de RD\$ 5,130.00; el 83% de los costos correspondió a materiales y el 13% a mano de obra.

Las dimensiones del colector son de 10 m², la temperatura máxima de la bandeja es de 52°C y reduce la humedad de un 18% a un 13.4% en dos días (20 horas). El grano utilizado en las pruebas fue el maíz.

El secador solar de pescado se desarrolló a un costo de RD\$ 450.00, para una carga de 1.5 a 2 quintales. El período de secado fue de 2 días (20 horas de sol) y el costo resultante por tonelada métrica fue de RD\$ 801.00, en comparación con RD\$ 2,146.00 para el sistema convencional de secado.

2.4.2.4 Sistemas de bombeo

Se instaló un sistema fotovoltaico para bombear diariamente 50 m^3 de agua bajo una radiación de 5 kWh/ m^2 . El costo resultante fue de RD\$ 0.64/ m^3 , mientras que el de una bomba de gasolina era de RD\$ 0.53/ m^3 .

Además de que la bomba no se produce localmente, el costo resultó elevado debido al precio de las celdas fotovoltaicas. El sistema sólo sería competitivo si disminuyera el costo de dichas celdas.

Aplicando la tecnología de las celdas fotovoltaicas se han instalado en el país algunos sistemas, como son: un refrigerador para medicamentos en la Clínica Rural de Las Tablas, en Baní, que

	r '.
	L.,
	r ·
	r
	•
	_
	b.
	_
	}- -
	_
	.
	_
	.
	_
	
	•
	r- 1
	- 1
	ا ا
	-
	- 1
	-
	,
	'
	<u> </u>
	1
	_
	-
	_
	_
	_
	4
	-
	_
	_

está fuera de servicio; una bomba de agua en el Centro Nacional de Tecnología Apropiada (CENATA) de La Vega y energía eléctrica para los repetidores de los teléfonos rurales, así como sistemas de bombeo de agua para calentadores solares en la zona norte del país.

También se desarrolló una planta solar térmica para el bombeo de agua, de 75 m³ de capacidad y 7 m de altura, bajo una radiación de 6 kWh/m² por día en el plano del colector. El costo de instalación FOB para 1983 fue de US\$ 8,500.00. El sistema arrojó un costo aproximado de US\$ 0.31/m³, que está lejos de la meta de US\$ 0.10/m³ establecida por el Banco Mundial para países en desarrollo.

2.4.2.5 Lagunas solares

El subprograma B del PAES tenía como meta la realización de un Estudio de Prefactibilidad para la generación de electricidad en base a lagunas solares.

Para un factor de uso de 80%, el costo por kWh resultó de RD\$0.35. Para evaluar el proyecto se previó un préstamo pagadero en 5 años. Una vez pagado el préstamo sólo se tenía el costo fijo de operación y mantenimiento (RD\$ 0.005/kWh) y, para la vida útil de 30 años, el costo de generación bajaba a RD\$ 0.18, que resultaba competitivo en comparación a los costos de la CDE en ese momento (1985).

- 2.4.3 Proyectos de la CDE
- 2.4.3.1 Planta Solar de Neyba
- 2.4.3.2 Planta Solar de Montecristi

		r
		L ,
		r
		L
		r
		L .
		r
		٢
		Γ.
		L
		,1
		L
		L
		,

2.4.4 Proyectos de las ONG

2.4.4.1 Proyectos de ENERSOL

La compañía ENERSOL, Inc. desarrolla desde 1985 un programa de electrificación rural sobre la base de sistemas solares fotovoltaicos. Hasta 1991 se habían instalado más de 1,500 sistemas pequeños en comunidades rurales en la Región Norte del país.

El sistema consiste en uno o dos módulos solares, una caja de control, una batería de almacenamiento de carga, alambrado y dispositivos de iluminación. La capacidad es de 20 a 200 vatios, a un costo que oscila entre US\$ 350.00 y US\$ 1,250.00.

El sistema típico es de 48 vatios que produce unos 6 kWh por mes y el costo de instalación es de US\$ 600.00. Abastece normalmente 5 bombillos, un radio cassette, un TV y una licuadora.

Se basa en una ONG local que administra un fondo rotativo. Se ofrecen créditos de US\$ 400.00, pagaderos en 36 meses con tasa de interés baja para cubrir el costo local del dinero.

2.4.4.2 PROSOL

La compañía PROSOL desarrolla proyectos de energía solar para uso doméstico e industrial.

2.4.4.3 CODOPROC

El Consejo Dominicano de Promoción Comunitaria (CODOPROC) ha establecido, en su Finca-Escuela ubicada en la carretera Santo Domingo-La Victoria, cercas eléctricas con paneles solares para la crianza de ganado vacuno y caprino. Un panel de 12 voltios, cuyo costo de instalación es de unos RD\$ 3,000.00, puede alimentar una

	· .
	. .
	L

cerca de hasta 40 Km de extensión. El sistema completo, incluyendo alambres y aisladores, cuesta alrededor de RD\$ 10,000.00 y es utilizado por productores privados dominicanos.

2.4.4.3 Proyectos de Fundación Terra Nuova

La Fundación Terra Nuova, de Italia, ha estado apoyando a ONG locales en el desarrollo de proyectos de reforestación y de uso de la energía solar para energizar cercas de crianza de ganado, entre otros.

2.5 Proyectos de biogas

2.5.1 Introducción

El biogas es un insumo que podría satisfacer necesidades energéticas de un vasto sector nacional. En las zonas rurales podría utilizarse tanto en viviendas individuales como comunales y en pequeñas explotaciones agropecuarias. Internacionalmente se ha acumulado una gran experiencia al respecto, y las tecnologías desarrolladas son muy sencillas y de fácil aplicación para cocción de alimentos, iluminación, hornos, máquinas de combustión interna y generación de electricidad.

2.5.2 Proyectos de COENER

Se construyó una planta de biogas tipo OLADE-Guatemala, que fue inaugurada el 19 de mayo de 1981, a un costo de RD\$ 6,642.00. Esta inversión fue planeada para recuperarse en tres años si el biogas sólo se empleaba para sustituir el combustible de cocinar y en la mitad del tiempo si servía para sustituir la compra de abono comercial. El proyecto se desarrolló en la comunidad de La Zanja de Higüey.

Ţ ^{1.}
<u> </u>
- γ - γ
L ,
Γ΄
I.,
• • · · · · · · · · · · · · · · · · · ·
•

Se diseñó una planta de 17 m³ de producción diaria en base a diez familias. Se producirían 8.5 toneladas de abono cada 25 días, de las cuales 5.5 toneladas serían de abono sólido y 3.0 de abono líquido.

En el programa de biodigestores se construyeron 60 biodigestores y se impartieron 25 cursos para manejo y técnica de construcción de los mismos.

2.5.3 Investigaciones de EMLURB

En la ciudad de Santo Domingo, la Empresa de Limpieza Urbana (EMLURB), asistida por técnicos de nacionalidad brasileña, realizó en el curso del año 1989 y del 1990 experimentos que permitieron identificar un gran potencial de biogas en los vertederos de desechos sólidos de Guaricano y de Cancino, con posibilidades de ser utilizado para la generación de electricidad, uso doméstico y transporte.

2.6 Proyectos de Energía Eólica

2.6.1 Introducción

La energía eólica ha sido aprovechada en la República Dominicana desde el siglo XIX, cuando se instalaron los primeros molinos de viento para bombeo de agua en las zonas rurales. En 1954, las instituciones oficiales operaban unos 254 molinos de viento.

2.6.2 Proyectos de COENER

2.6.3 Proyectos de CENATA

	•	
		1
		-
		•
		L .
		- 1
		_
		- 1
		- 1
		-
		_
		L
		1
		-
		_
		1
		_
		1
		- 1
		Ī
		1
		-
		.
		L .
		1 -
		L .
		1
		-
		.
		r-
		Ī
		-
		1
		L
		_
		L
		_

2.6.4 Proyectos de INAPA

En 1962, INAPA tenía bajo operación unos 360 molinos de viento. A partir de 1984, INAPA desarrolla un programa instalación de molinos de viento, comprados en Argentina, que es complementario y está dentro del Plan Nacional de Acueductos Rurales (PLANAR). El mismo está destinado a abastecer de agua a localidades con poblaciones entre los 200 y 400 habitantes. La primera fase comprende la instalación de 270 molinos que beneficiarían a unos 77,000 habitantes.

2.7 Plan de Electrificación Rural

Un estudio realizado entre 1984 y 1985 por el Instituto de Estudios de Población y Desarrollo (IEPD) y la COENER indicaba que la cobertura del servicio eléctrico alcanzaba un 60.7% en términos globales. En las zonas urbanas fue de 89.4% y en las rurales descendió a 29.4%.

El Programa de Electrificación Rural (PER) en la República Dominicana se inició formalmente en el 1971, con la ayuda del Gobierno del Canada y del BID y con su implementación se electrificaron unas 383 comunidades rurales entre 1971 y 1977. En vista de sus alcances exitosos pero limitados, la CDE retomó en 1985 los estudios relativos a la electrificación rural y preparó, con el asesoramiento de la Harza Engineering Company, el Plan de Electrificación Rural 1986-2006, que no fue iniciado.

La meta de este Plan es proveer de electricidad a un 95% de la población rural del país, ascendente a más de 3 millones de personas. Otras metas del plan se enumeran a continuación:

•	r	-
	l l	
	•	
	•	
	ł	
	•	
		-
	ł	
	•	•
	ſ	-
	•	٠.
	ſ	-
	ι	
	•	-
	•	-
	•	-
	r	
		٠
	•	J
	(
	•	-
	(
	•	-
	1	• '
	•	1 _
	1	+
	•	پ ز
	(1
		I
	•	١ -
	(,
	•	٠ -
	1	1
		١_
	•	٠ –
	,	¥
	<u>'</u>	. _
	•	• -
	ſ	
	İ	
	•	
		_,
	l	_'
	1	L
		L
	•	۱ ٔ
	1	
	•	٠.
	•	
	•	-

- La extensión de la energía eléctrica, aunque sea de manera limitada, a todas las áreas provinciales.
- Priorización de las instalaciones con valores sociales especialmente elevados, como escuelas y dispensarios médicos.
- Disminución de la migración del campo a las grandes ciudades.

Para la definición del PER en el año 1986 se efectuó una encuesta que abarcó a 16 comunidades rurales de las distintas regiones del país: ocho electrificadas y ocho no electrificadas. En total fueron encuestadas 464 viviendas rurales.

Las encuestas efectuadas en las comunidades ya electrificadas demostraron que "más de la mitad de las viviendas electrificadas todavía dependen del carbón de leña para planchar y para calentar el agua". Asimismo, que "los electrodomésticos para cocinar no son utilizados en las zonas rurales en estos momentos".

Otra de las conclusiones de las investigaciones de campo del PER fue que la abrumadora mayoría de las viviendas rurales utilizaba carbón de leña para cocinar, lo que confirmaba los hallazgos efectuados por otros investigadores.

2.8 Pequeñas Centrales Hidroeléctricas (PCH)

A fines de los años 70 se realizaron tres inventarios (Sogreah/CDE, COENER, CPE) que identificaron 20 pequeños aprovechamientos hidroeléctricos en todo el país y 8 complejos de pequeñas centrales hidroeléctricas por la Corporación de Presas del Este (CPE).

		~ '
		r
		<u> </u>
		r
		(
		6-1
		_
		L.
		r
		l l
		-
		-
		.
		r
		L.
		_
		r
		1
		b.
		r
		•
		Ī
		<u> </u>
		_
		, '
		j
		•.
		, -
		<i>I</i>
		.
		ا سو
		1
		_
		ا بر
		ſ,
		i i
		, - •
		1
		k.
		,
		_
		,
		[
		1
		•
		<u>.</u>
		1
		L
		ئ ـــ ر
		}
		<u>.</u> ,
		-
		ſ
		~ 1

En la década del ochenta se iniciaron varios programas para la construcción de pequeñas centrales hidroeléctricas, con la participación de la CDE, COENER y el INDRHI, y el patrocinio de gobiernos amigos y de organismos internacionales tales como: la USAID, la República de China, GTZ (República Federal de Alemania), BITS (Suecia) y el Programa de las Naciones Unidas para el Desarrollo (PNUD), entre otros. He aquí algunos de los más importantes:

- 1. Siete pequeños proyectos del Instituto Nacional de Recursos Hidráulicos (INDRHI).
- 2. Catorce pequeños proyectos de la antigua Dirección de Desarrollo Hidroeléctrico (DDH) de la Corporación Dominicana de Electricidad en la cuenca alta de los ríos Yaque del Norte y Bao.
- 3. Programa conjunto CDE-INDRHI-COENER-AID, cuyo objetivo sería seleccionar dos de 20 comunidades posibles para la ejecución de mini-centrales hidráulicas sobre la base de la participación de las comunidades en la construcción y operación de las instalaciones para el suministro de energía eléctrica.
- 4. Acuerdo de Cooperación Técnica con la República de China para desarrollar las PCH a través de la CDE y el INDRHI.
- 5. Identificación de nueve pequeños aprovechamientos en la cuenca alta de los ríos Ocoa y Nizao por la Stone & Webster con el patrocinio del PNUD y la DDH-CDE.

	ŗ
	~ !
	•
	•
	· · · · · · · · · · · · · · · · · · ·
	<u>-</u>
	· •
	r
	••• į
	, (
	(
	•
	[
	•-
	.
	۲. ،
	[.
	e •

- 6. Estudios de tres proyectos de la COENER con la asistencia financiera de la CIDA del Canada (Casuí, Cocuyo y Arroyo Limón).
- 7. Ejecución de los proyectos Los Ranchitos, en la Provincia Peravia, por el INDRHI; Janey, en Jánico, por la PUCMM; y Los Pinos del Edén, en La Descubierta, por INDESUR.

En un informe reciente sobre los proyectos Canal Santana y Nizaíto, se discute el rol de las PCH y se destaca como una de las recomendaciones para la ejecución del Plan de Electrificación Rural que -en la búsqueda de la autosuficiencia energética del país- los mini proyectos hidroeléctricos están llamados a resolver dos problemas:

- a) Proveer energía para el medio rural, facilitando así el desarrollo de pequeñas industrias, y
- b) Remplazar a los hidrocarburos como fuentes primarias de energía.

Luego de ser suspendida a fines de 1986, se ha reiniciado -en el año de 1991- la construcción de los pequeños proyectos hidroeléctricos de El Salto (Constanza), Baiguaque y Yuboa. También el INDRHI ha iniciado la construcción de las microcentrales de Nizao-Najayo (350 kW) con la ayuda de la República de China, y Los Anones (100 kW) con la ayuda de Suecia, ambas dentro del aprovechamiento de caídas en el Canal Marcos A. Cabral.

	_ 1
•	1
	<u> </u>
•	•
	L
	_
	_
	L
	•
	1
	-
	L
	•
	ł
	-
	L
	_
	•
	I
	_
	~
	Ĺ
	•
	_
	L
	f
	ŧ
	■.
	L
	r
	.
	(
	•
	_
	L
	_
	L .
	1
	4.

3. ESTRATEGIAS ENERGETICAS Y SUGERENCIAS PARA LA ELABORACION DE POLITICAS ENERGETICAS

3.1 Introducción

Se presenta a continuación un resumen de los planteamientos de Joy Dunkerley [et al], tomados de su libro: Estrategias Energéticas para los Países en Desarrollo [16; 237-245].

Para los países en desarrollo e importadores de petróleo, como la República Dominicana, la necesidad en el corto plazo consiste en hacer frente a las facturaciones de petróleo que ascienden a cifras cada vez más elevadas, mediante alguna combinación de ajustes en otras importaciones y exportaciones, o a través de la conservación y sustitución del petróleo, tratando de reducir al mínimo el efecto adverso sobre el desarrollo sostenido. A largo plazo, esta necesidad consiste en llevar a cabo una transición ordenada hacia un régimen modificado de suministro y de uso de la energía que implicará: costos relativos más altos, diferentes demandas de recursos y modificaciones en las estrategias de desarrollo.

"Los problemas del largo plazo no pueden ser diferidos hasta que estén resueltos los del corto plazo" [16; 237]. Las etapas iniciales necesarias para modificar el carácter básico del régimen energético pueden provocar costosas consecuencias si no se ha empezado lo antes posible. Por tanto, la formulación de una estrategia global de energía es imperativa: no debe ser un ejercicio aislado sino una parte integral del manejo de la economía en general [16; 237].

•
r
L.
Ţ
<u>L</u> .
٢
L
ſ
•
•
5.
•
•
\ _
•

- '
~
_
•
_
_
•
•
-

El marco de esa estrategia debería, preferiblemente, incluir una gama de escenarios alternativos que abarquen una generación del futuro energético del país, especificando las principales opciones de políticas, las medidas necesarias para moverse por una u otra zona y los lapsos en que fuera necesario adoptar decisiones firmes. Sobre los problemas de la prolongada etapa preinicial, puede que sea necesario tomar decisiones sobre la base de un conocimiento parcial. En algunas situaciones, las decisiones estarán pendientes hasta que se hayan obtenido los resultados de la exploración de los recursos, de las investigaciones tecnológicas y de los experimentos de campo [16; 238].

Dunkerley, Ramsay, Gordon y Cecelski presentan una serie de sugerencias para: i) el mejoramiento de la eficiencia energética, ii) el incremento de los suministros de energía para el remplazo del petróleo, y iii) la inserción de la energía dentro de objetivos de desarrollo más amplios.

3.2 Mejoramiento de la Eficiencia Energética

Para este objetivo, las sugerencias son:

* Conocer cuánta energía se usa y dónde se usa. El primer paso para utilizar con mayor eficiencia la energía rural es saber cómo se emplea y dónde se emplea. Esto supone efectuar encuestas de uso de energía en el medio rural para mejorar las informaciones del balance de energía con el objetivo de que puedan identificarse en detalle los principales sectores de uso terminal así como las posibilidades de sustitución [16; 238]. Esta acción ya ha sido sugerida en la publicación de

{ ۲., L los boletines de COENER cuando se indica que es necesario conocer la estructura energética del sector rural, sus problemas y sus implicaciones en la economía nacional.

Es necesario evaluar el consumo de energía en las operaciones agrícolas tradicionales (arado, siembra, cultivo, cosecha), así como en los nuevos paquetes tecnológicos recomendados.

- * Programar nuevas inversiones en tecnologías que ahorren energía. "El alza de los precios de la energía (...) [hace] que resulte económico aplicar en el corto plazo algunas tecnologías que ahorren energía, y muchas más en el largo plazo. Uno de los candidatos primarios es el sector transporte, por su casi total dependencia de combustibles (...) [importados] y porque absorbe [una] gran parte del consumo total de petróleo [el 26.7% en 1991 para R. D.]." Se necesita una utilización más eficiente de los vehículos, un transporte más eficaz "y una más intensa exploración de la amplia variedad de modalidades de transporte (...)" [16; 239], tanto para los mismos agricultores y sus familias como para el traslado de las cosechas y productos agropecuarios al mercado o a los centros de procesamiento.
- * Incrementar la eficiencia en el uso de los combustibles tradicionales. El mejoramiento de la eficiencia de los fogones tradicionales para cocinar y de los hornos para fabricar el carbón, incluso mediante subsidios si fuere necesario, "podría ser una de las formas más simples y baratas de proveer más energía al sector [doméstico] tradicional"

[
•
I
[
[
Ţ.
[
-
(
į.
!
, -
Ĺ
Ĺ
-
`

evitando así un incremento en los suministros de combustibles derivados del petróleo o de los combustibles tradicionales. Ahora bien, "se requeriría una cuidadosa planificación y un compromiso que trascienda los proyectos pilotos" [16; 239-40].

* Brindar a los consumidores variaciones atractivas en materia de precios de energía, prestando debida atención a las consideraciones de equidad. Una adecuada política de precios implica un análisis cuidadoso de los subsidios y los impuestos al consumo de energía, "muchos de ellos originados en condiciones diferentes y para otros fines que no son los de la conservación de la energía, y algunos de los cuales pueden inclusive tener efectos adversos al suministro y uso de la energía." "Todas las estructuras de los precios energéticos, incluidas las tarifas de electricidad, deben ser revisadas" periódicamente [16; 240].

"Serios problemas de equidad se plantean frente a la perspectiva de la creciente alza de precios de la energía, especialmente para las necesidades domésticas y de transporte de los grupos de más bajos ingresos. Existe claramente un agudo conflicto entre la eficiencia económica y la equidad" [16; 240].

* Recurrir con precaución al uso de impuestos, subsidios y normas para lograr la conservación de la energía. Puede que sea necesario implementar medidas especiales para asegurar los objetivos de conservación. La reglamentación sobre eficiencia energética de los principales aparatos que utilizan energía,

-

los impuestos y los subsidios a los consumidores son ejemplos de estas medidas [16; 240].

3.2.1 Impuestos y subsidios

En República Dominicana se han establecido impuestos (denominados "diferenciales") a ciertos energéticos, principalmente a la gasolina. Sin embargo, el GLP se vende frecuentemente a precios subsidiados por debajo de su costo real.

El Cuadro No. 23 muestra la estructura de los precios de los combustibles en el año de 1991. Se observa que el GLP es el único combustible subsidiado por el Gobierno. La Refinería Dominicana de Petróleo, S. A. (REFIDOMSA) lo ofrece a RD\$8.19 pero -como el Gobierno mantiene un precio de control- se vende a los distribuidores a RD\$2.06: esto implica que el Gobierno subsidia con RD\$6.13 cada galón vendido.

El avtur, el fuel oil, el gasoil, la gasolina y el kerosene son los combustibles que generan importantes ingresos al Gobierno a través de los diferenciales. Para 1991, el avtur genera un diferencial de RD\$3.37/galón; el fuel oil, uno de RD\$2.15/galón; el gasoil, RD\$2.71/galón. Finalmente, la gasolina y el kerosene generan los diferenciales más elevados: RD\$8.76/galón y RD\$6.10/galón.

En el año de 1991, la Tesorería Nacional recibió por concepto de diferenciales RD\$1,880,205,539 (Mil millones ochocientos ochenta millones doscientos cinco mil quinientos treinta y nueve pesos) -de acuerdo a datos publicados por la Secretarías de Estado de Finanzas y de Industria y Comercio en la prensa nacional. En 1990, este

		•	
			r
			1
			_
			•
			<u> </u>
			-
			•
			_
			•
			L
] [_
			•
			_
			•
			•
			_
			1
			-
			_
			- [
			-
			Ţ
	•		L .
			ſ
			Γ
			Γ'
			1
			r-
			_
			•

diferencial fue de RD\$244,454,700 (Doscientos cuarenta y cuatro millones cuatrocientos cincuenta y cuatro mil setecientos pesos) - datos publicados por Isidoro Santana y Magdalena Rathe [36a; 224-225].

3.3 Incremento de los suministros energéticos

"Los combustibles fósiles y la hidroelectricidad convencional seguirán siendo las fuentes principales de energía comercial por lo menos durante las dos próximas décadas." Los principales aportes de nueva energía se obtendrán de recursos convencionales -petróleo, carbón y energía hidráulica- "no explorados o no explotados anteriormente." Otras fuentes más recientes de energía, como la "geotérmica, deben encararse con cautela, pero podrían jugar un papel significativo (...). La biomasa encierra un importante potencial con miras a una producción más vasta o más eficiente y a su uso tanto en los sectores tradicionales como [en los] modernos. Diversas tecnologías 'apropiadas' pueden estar destinadas a desempeñar un papel práctico, pero [éstas] dependen de cuestiones técnicas y sociales" a ser aclaradas [16; 241].

3.3.1 Recursos Energéticos Renovables

"La posición competitiva de los recursos energéticos renovables -y de algunos otros menos convencionales, como los geotérmicos- ha mejorado notablemente (...). Ello permite formular las siguientes sugerencias:"

* Volver a evaluar los recursos energéticos renovables. "Una evaluación general de este tipo de recursos ayudaría a identificar algunas de las opciones más promisorias (...)"

→
•
-:
<u>.</u>
.
-
. 1
7
7
ر نما
٠.
_
-
•
_
_
•
-

"Empero, deben fijarse limitaciones para evitar los excesivos costos humanos y presupuestarios de una búsqueda exhaustiva de datos sobre todas las formas posibles de energía renovable" [16; 242].

- * Examinar otra vez el potencial hidroeléctrico nacional. Volver examinar los proyectos hidroeléctricos implementados en su momento, que fueron postergados en otro tiempo." Las instalaciones mini-hidráulicas, tanto las existentes que han dejado de operar (Ocoa, Los Ranchitos, Janey, Pinos del Edén, Jánico) como las ya estudiadas (en ríos y canales de riego), pueden hacer un aporte significativo "pero no debe dejarse que su actual difusión desdibuje el potencial de un desarrollo hidroeléctrico convencional en mayor escala, potencial realmente importante (...) [16; 243]. * Avanzar en el uso de la energía geotérmica con un criterio conservador. "Para la mayoría de las formas de energía geotérmica se recomienda una actitud cauta, mientras no se tengan los resultados de la costosa experimentación que se realiza en [los] países (...) ricos" [16; 243].
- * Promover el uso de la biomasa en los sectores modernos.

 "Quizá la más promisoria opción es el uso de biomasa para
 generar electricidad. En muchos lugares (...) podrían
 administrarse y cultivarse sistemáticamente, sobre la base de
 un rendimiento renovable y sostenido, [fincas energéticas,]
 (...) con el objeto de producir [biomasa para generar]
 electricidad a costos competitivos (...) Por igual, los

-
_
•
-
; •
-
•
_
0
140
-
-
-
-
-
_
•
-
_
•
_
•
•
-
_
•
-
_
_
-
4
J
_
J
•
Ų

desechos agrícolas, los desechos urbanos y otros cultivos energéticos exóticos (jacinto de agua, jojoba, etc) "representan a menudo nuevas fuentes concentradas de biomasa subutilizada" [16; 243].

- * Explorar la opción del combustible alcohol. Otra "área clave es la de los combustibles líquidos, particularmente para el transporte. (...) Una opción menos riesgosa, pero también más cara según las proyecciones tecnológicas seriamente previsibles, consiste en promover" o utilizar cultivos existentes de caña de azúcar y cultivos de almidones (del tipo de granos y tubérculos) "para su conversión en etanol. etanol posee algunas ventajas que pueden compensar en parte su costo; se lo puede usar en remplazo de la gasolina y de otros productos del petróleo en los vehículos motorizados [-como en el caso del Brasil]. Es el equivalente de la gasolina de alto octanaje y, en consecuencia, su precio puede fijarse en cierta medida dentro de la línea de los aditivos a la gasolina. Los beneficios indirectos, COMO la creación de [oportunidades para la mano de obra rural] y el ahorro de divisas, pueden también ayudar a justificar los costos relativamente elevados del alcohol" [16; 243-244].
- * Incrementar los suministros de biomasa para usos tradicionales. Es posible utilizar los recursos forestales para convertirlos en carbón vegetal, alimentando así los fogones y hornos tradicionales. "Las tecnologías que permiten un rendimiento sostenido [del bosque y la construcción de

	r	1
	•	٠,
	r	
	-	1
	-	
	•	•
	F	
	•	ţ
	-	í
	•	ļ
	-	
	34	-
	-	
	•	
	-	
	L.	
	اد -	
	_	
	L	
	-	
	les.	
	-	
	_	
		,
	.	
		. 1
	-	
		4
	-	
	-	-4
	•	4
	· ·	
	, <i>,</i>	4
	•	

¢

hornos de carbón de mayor eficiencia] son un elemento esencial de este tipo de estrategia. En teoría, deberían bastar los incentivos del mercado para proveer [carbón de buena calidad] (...) a los usuarios; sin embargo, las limitaciones (...) [económicas de los que se ocupan de este tipo de explotación requieren] un estímulo del gobierno para impulsar (...) [la explotación racional del bosque seco, la preparación del carbón] y [su] transporte, así como también el desarrollo de nuevos recursos a través de plantaciones de árboles (...) [16; 244].

las tecnologías "apropiadas" Asegurarse de auténticamente. "Las tecnología energéticas deben ser apropiadas en función de los costos sociales verdaderos: provisión de los tipos necesarios de mano de obra, capital y otros insumos, contexto socioeconómico sociopolíticas." Dunkerley [et al] hacen la siguiente acotación: "En el caso de suministros de energía proveniente de biomasa, en los lugares donde las condiciones del suelo y del clima pueden ser factores decisivos para determinar los rendimientos y los costos, resulta indispensable experimentación de (...) [campo] en los propios países en desarrollo" [16; 244].

"Otras tecnologías (...) promisorias -entre ellas las opciones solares del tipo de las células fotovoltaicas- pueden requerir un enfoque más amplio que (...) el énfasis puesto (...) [en

la] amplia promoción (...) [de] la descentralización y la pequeñez de la escala" [16; 244].

"Una de las más eficientes entre las modernas tecnologías comunales 'apropiadas' parece ser el biogas, pero probablemente resulte más económica en una gran escala y más práctica como empresa comercial que como empresa doméstica o de una pequeña comunidad. Debe brindarse más apoyo a la promoción de instalaciones de biogas y de otros tipos de energía renovable como [resultado de] grandes esfuerzos comunitarios o inclusive como empresas industriales" [16; 243-244].

* "Revisar las tecnologías energéticas comunales en relación con las metas nacionales de planificación. Las 'tecnologías comunales' -adecuadas a los recursos y capacidades de la comunidad local- sirven no pocas veces para aportar un valor social que trasciende lo puramente económico" [16; 245].

Ejemplos de tecnologías lugareñas son: los colectores solares de placa plana para el secado de cultivos y el calentamiento del agua, las cocinas solares, las bombas solares para riego, las celdas fotovoltaicas, los pequeños molinos de viento, las instalaciones mini-hidráulicas, el biogas, las parcelas de bosques comunitarios y los hornos más avanzados de carbón de leña.

En algunas situaciones, es probable que la energía minihidráulica resulte más cara que la energía de una red centralizada. No obstante, "los planificadores (...)

	-
	_
	•
	_
	-
	•
	_
	-
	•
	-
	•
	•
	-
	-
	•
	,
	•
	•

[necesitarán] computar otros tipos de beneficios sociales para El contrapesar las desventajas económicas. uso de 'tecnologías comunales' para promover ciertos fines, como una mejor calidad de vida, una más equitativa distribución de los ingresos y de los recursos, y [una] generación de ocupación rural, implica algunos costos económicos. En la medida de lo posible, el precio económico de [los] objetivos más amplios" debe ser evaluado explícitamente y asumido deliberadamente, "incluyendo en esa evaluación [otros] medios alternativos (y acaso menos costosos) para alcanzar esos objetivos sociales" [16; 245].

3.4 Energía y Desarrollo

"Las sugerencias anteriores se centraban en medidas tendientes a mejorar las eficiencias de la energía y a incrementar el abastecimiento energético (...). Esta sección se refiere con más amplitud a la relación entre energía y desarrollo económico, especialemente a la manera en que las políticas energéticas deben encajar en las estrategias del desarrollo integral. En general, una política energética debe estar subordinada a los objetivos más amplios del desarrollo, pero debe admitirse que la cambiante economía y [la] disponibilidad de energía hace[n] que esa consideración sea potencialmente crítica en algunas políticas nacionales de desarrollo [16; 245]. Estas sugerencias son:

"Integrar la planificación del sector energético en las estrategias más amplias del desarrollo. El salto de los precios de la energía y las incertidumbres sobre la

,`			
		•	-
			_
		•	•
		(
		•	
		•	-
		•	_
		·	•
			٠.
		•	•
		•	-
			_
		·	-
		•	
		-	-
		•	_
		_	_
		•	
		•	
			-
		-	
		•	
		_	•
		=	
		-	
			•
		~	
		•	_
			,
		-	•
			_
			-
		_	
			-4
		_	•
		_	-4
		_	
		_	
		•	-
		<u>-</u>	•
		_	_
		•	. ,

disponibilidad de petróleo han determinado que se reconozca universalmente la necesidad de una planificación energética global como parte de los esfuerzos de desarrollo de cada país. Sin embargo, la oferta y la demanda de energía no debe ser la característica predominante de la planificación del desarrollo; nada debe planificarse aisladamente de los objetivos nacionales más amplios. La única posibilidad racional consiste en situar la planificación de la energía en su correcta posición subordinada, aunque reconociendo que la cambiante economía de la energía conllevará nuevas restricciones que afectarán las estrategias globales [16; 245-2461.

"En algunas áreas de planificación -urbanización, transporte, desarrollo industrial, desarrollo rural integral, desarrollo regional y políticas tecnológicas- la energía podría llegar a ser un factor particularmente importante. En cada una de esas áreas los planes necesitan una revisión a la luz de los mayores costos de la energía o de los cambios que convenga introducir en las formas de los suministros de energía. Como sugerencia mínima deben ser revisadas las consecuencias (...) [energéticas de continuar] los planes existentes (...) [16; 246].

No buscar la autosuficiencia energética sin pensar antes en el costo. "Muchos países advierten que la carga de las importaciones de petróleo se ha vuelto intolerable y están buscando la manera de alcanzar un grado significativamente más

<u>'</u>-t . .

alto de autosuficiencia energética subsidiando y alentando por otras vías la producción nacional. Pero la autosuficiencia energética tiene un precio, y en muchos casos ese precio será prohibitivamente alto. Deben investigarse medios alternativos que proporcionen seguridad contra la posible interrupción de los suministros, por ejemplo la diversificación de las fuentes y [el incremento o establecimiento de] reservas. (...). Deben examinarse con cuidado todas las propuestas de subsidios destinados a la autosuficiencia energética, a fin de asegurar que los costos no pesen más que los beneficios. Desde luego, esa evaluación debe incluir los beneficios indirectos, entre ellos ciertos efectos externos tales como una mayor ocupación de la fuerza laboral subutilizada, [un] ahorro de divisas y un margen más amplio para la elaboración de la política exterior [16; 246].

		-
		•
		•
		•
		_
		•
		•
		-
		•
		-
		•
		•
		-
		•
		•
		_
		•
		_
		_
		_
		-
		•
		-
		•
		•
		b 1
		-
		•
		•
		-
		•
		_
		•
		_
		_
		-
		-
		-
		-

4. RESUMEN

4.1 Diagnóstico

- 1. Para 1991, la Oferta Total Energética de la República Dominicana: 4.3 millones de toneladas equivalentes de petróleo (30.8 millones de barriles equivalentes de petróleo) está constituida por un 24.9% de energéticos de origen vegetal (como leña, bagazo y carbón vegetal), un 70.4% por derivados del petróleo, un 0.5% por carbón mineral y un 4.2% por recursos hidroenergéticos. Las importaciones de petróleo crudo y sus derivados representaron, en los últimos cinco años de la década del ochenta, cerca del 25% del valor de las importaciones totales.
- 2. La Oferta de Agroenergía Primaria (leña y biomasa) en 1991 había descendido al 32% de la Oferta Total de Energía Primaria y los valores absolutos se mantenían relativamente constantes: alrededor de los 1.06 millones de TEP (aproximadamente 7.7 millones de barriles equivalentes de petróleo).

En ese mismo año, la Oferta de Agroenergía Secundaria (carbón vegetal) había descendido al 2.3% de la Oferta Total de Energía Secundaria y los valores absolutos se mantenían relativamente constantes: alrededor de 0.075 millones de TEP (aproximadamente 0.54 millones de barriles equivalentes de petróleo).

- 3. No se tienen explicaciones acabadas sobre las disminuciones de la oferta energética en términos de leña y de carbón vegetal para los últimos años.
 - 4. El Sector Agropecuario ocupa el último lugar en el consumo total de energía, -de acuerdo con los Balances Energéticos

	-
	•
	•
	•
	•
	•
	-
	•
	-
	•
	•
	_
	•
	-
	_
	-
	-
	-
	_
	-
	•
	• -
	-
	-
	• •
	•
	•
	-
	-
	-
	-

į

publicados- alcanzando un 0.67% en 1981 y disminuyendo su participación hasta un 0.61% del consumo total en 1985. En el Cuadro No. 7 se aprecia que la participación de este sector es de 0.71% para el año de 19 9 y de 0.95% para el año de 1991.

- 5. El consumo del medio rural sería aproximadamente de unas 5/),000 TEP (equivalentes a unos 4 millones de barriles de petróleo).
- 6. Una mejor representación del consumo en el medio rural aparece en el estudio de COENER-EDI elaborado en 1980: los hogares rurales y la agricultura participan con unos 537,493 TEP, equivalentes a una participación del 19.1% del Consumo Total.
- 7. Los requerimientos de consumo energético son mayores en la zona rural que en la zona urbana. El más alto consumo por persona de energía corresponde a la zona rural con 31.54 gep/año (galones equivalentes de petróleo por año).
- 8. IEPD y COENER determinaron que en la zona rural se consume más energía para cocinar que en la zona urbana (1.92 millones de bep versus 1.17 millones de bep) a pesar de que la zona rural cuenta con una población menor que la urbana "y de que la tradición y la precariedad de recursos en el campo obligan a la ingestión por parte de muchos trabajadores gi colas de sólo una comida fuerte al día. Es lógico que así sea por el tipo de energético que predomina en cada una de las zonas. En la zona rural predomina el uso de leña, a diferencia de la zona urbana, donde predomina el GLP y el carbón. Estos dos últimos combustibles son más eficientes que la leña debido al tipo de artefacto utilizado, de lo cual se deriva

1.- 1ª U . M que los requerimientos de consumo energético sean mayores en la zona rural que en la zona urbana."

- 9. El valor del consumo de leña y carbón per cápita de COENER -aproximadamente 0.58m³ de madera/persona/año- es inferior al reportado en las investigaciones realizadas en 1985 por Santiago W. Bueno, Humberto A. Checo y Franklin A. Reynoso del Instituto Superior de Agricultura (ISA) en la sección de Inoa de San José de las Matas (0.94 m³/persona/año) y es inferior también al uso estimado de madera en Filipinas (0.75 m³/persona/año).
- 10. La COENER determinó -mediante investigaciones realizadas en 1982- que el volumen total de madera para leña y carbón consumido en un año es de unos 1.57 millones de metros cúbicos. Para obtener esta madera sería necesario desmontar anualmente unas 100,000 hectáreas (1,600,000 tareas) de bosque nativo.

Partiendo de una población o densidad promedio para el bosque seco nativo de unos 15 árboles por tarea y utilizando los índices anteriores, se estima que unos 24,000,000 de árboles se cortan anualmente.

De este total, unos 20 millones se emplean para la producción de leña y de carbón vegetal y son utilizados principalmente para consumo doméstico; los restantes 4 millones son destinados a otros usos.

11. En la práctica, la mayor parte de la leña no se junta en los bosques sino que se obtiene de los árboles esparcidos a lo largo de las carreteras y en los campos; estos árboles alternan con los cultivos agrícolas.

L. L i

...

En el estudio sobre Inoa se evidenció que sólo un 50% de las familias recoge la leña en los bosques aledaños, recorriendo una distancia promedio de 2.2 km, con una frecuencia de búsqueda que puede ser desde diaria hasta semanal.

Aunque sólo el 44% de la población disponía de tierra propia, ninguna familia se preocupaba por mantener la reserva de combustible ni mucho menos por sembrar árboles. El costo inmediato de obtención de la leña se reduce al valor del tiempo empleado en la búsqueda. Lo elevado es el costo ecológico.

- 12. De acuerdo con J. Muñoz Malo, en la República Dominicana "son necesarios entre 3,300,000 m³ y 5,000,000 m³ [anuales] de madera, (dependiendo del % de población urbana que utilice leñas y carbón)"; si se consideran reforestaciones de crecimiento rápido y turno corto, tratadas como monte bajo, con crecimientos del orden de 18 a 20 m³/Ha/año, se necesitaría reforestar "entre 200,000 Ha y 250,000 Ha, que habría que realizar en 6 años a lo sumo, ya que la situación empieza a ser dramática."
- 13. Se estima que de ejecutarse todos los proyectos de construcción de redes eléctricas propuestos en el Plan de Electrificación Rural y -en especial- la ampliación de los proyectos existentes, la demanda de electrificación rural compuesta básicamente por las cargas residencial, comercial y de alumbrado público junto con la potencia eléctrica para el bombeo de agua de riego alcanzaría los 175,000 kW en un período de cinco años.

-4 - | 14. Se calcula que la demanda de energía eléctrica para el bombeo de agua de riego representa un 14% de la carga futura estimada.

r . 1

4.2 Inventario de Programas y Proyectos

Se describen a continuación los principales programas y proyectos de agroenergía desarrollados en el país en las últimas dos décadas por organismos gubernamentales, organismos no gubernamentales y agencias internacionales; se presentan algunas de las nuevas tecnologías desarrolladas en el campo de la agroenergía que podrían ser aplicadas en la República Dominicana y -en los casos en que la información estuvo disponible- las comparaciones de costos entre los sistemas convencionales y no convencionales.

	•
	* ***
	•
	* • •
	-
	•
	•
	•
	-
	•
	•
	.
	-
	ſ
	• 1
	['
	•]
	_]
	- 1
	- 1
	• 1
	· 1
	•
	i.

PROYECTOS QUE USAN BICHASA

 PROYECTO	08JETIVOS	CARACTER I STICAS TECNICAS	COSTO	ESTADO ACTUAL	OBSERVACIONES
Planta dendroter- mica de Pedernales y Finca de Energia		Plantacion forestal de 2,400 Na y planta de leña de 3,000 KW.	US\$ 1.2 millones (Plantacion) y US\$ 1,574/KW	Estudio de Factibilidad terminado.	
Planta dendroter- mica de Cumayasa Y Finca de Energia		Plantacion forestal y planta de leña de 50,000 kW.	us s 1,325/KW (1985)		
La Celestina		Manejo forestal. Plan- tacion de 1,300 Ha para producir leña, varas y postes y para aserrio.	RD\$ 1.1 mill. RD\$ 800,000 enuel (1985)		Es un proyecto que forma parte del Plan Sierra.
Plan de Accion Fo- restal de los Tro- picos (PAFT)	Plan de Accion Fo-Manejo y proteccion restal de los Tro-de recursos forestales picos (PAFI) cuencas y ecosistemas.	Plan de Accion Fo-Manejo y proteccion Plan de manejo de recursos restal de los Tro- de recursos forestales lanzado por la FAO a ejecupicos (PAFI) cuencas y ecosistemas. tarse en 25 años. Responsa- Produccion forestal. ble local COMATEF.		El gobierno lo ladopto, pero aun no ha arrancado.	Dentro de alcances PAFI se elaboro un Codigo Forestal que actualiza la le-gislacion vigente y la resume en un solo estatuto jurídico.
Manejo del Bosque Seco. (INDESUR/GT2)	Lograr sustentabi- lidad del bosque seco y elevar la calidad de vida de los moradores.	Desarrollo runal y fores- tal. Diversificacion de la produccion local.	RD\$ 32 mill. para 40 co- munidades (1992).	En expension de 16 a 40 comunidades del Suroeste.	Se ejecuta con fondos de la Sociedad de Cooperacion Alemana (GT2).
Sabaneta/Los Gajitos	Reforestacion y Irestauracion agro- hidrologica de la cuenca de Sabaneta.	Reforestacion de 14,600 Ha. Conservacion de suelos en 7,200 Ha, transformacion en monte seco arbolado de 5,200 Ha y mantener vegetacion actual	RD\$ 60 mill. (1991)		Se desarrolla con apoyo de la Agencia Española de Cooperacion Internacional (AECI).

		r
		₽ ** ₹
		r
		. 1
		r
		•
		r
		•
		-
		•
		•
		•
		•
		r
		•
		F
		•
		•
		• 1
		r '
		•
		r.
		r ·
		F '
		· ·
		1
		L
		L
		_ -

PROYECTOS QUE USAN BIOMASA (Cont.)

PROYECTO	sow113c90	CARACTERISTICAS TECNICAS	07830	ESTADO ACTUAL	OBSERVACIONES
Complejo pro- ducir energia por pirofusion.	Aprovechamiento de Fesiduos solidos Jurbanos y rurales.	Planta de 12,000 KV y sub- lestacion de 69 KV.	US\$ 28.5 millones (1977) 	Se contrato lentre CDE y CALIGUA, de Francia, pero no se ejecuto.	Los residuos se componian de desechos urbanos y bagazo de caña.
Briquetas Dominicanas	Aprovechar desechos lagricolas para pro- ducir combustibles	 Capec. produccion anual 70,000 qq. briquetas. Se expandira a 158,760 qq. 		En operacion.	El costo de adquisicion equivale a un 75% del carbon vegetal comun. Existen dos plantas en operacion, una en S.J.M. y otra en S.F.M.
Planta Electrica Barahona 2.	 Aprovechar barbojo disponible Ingenio Barahona y abaratar costo generacion.	Ptanta de 45,000 KV opera- ra con barbojo y carbon. 	US\$ 1,383/KW	En construccion.	
Plantas de cogene- racion del CEA.	Plantas de cogene- Aprovechar residuos Plantas c racion del CEA. de la caña, bajar gazo/cart costo generacion y ingenios vender excedente a	Plantas de 45,000 KW a ba- gazo/carbon en cercanias ingenios azucareros.	US\$ 1,336/KV (1985) 	 Terminado Estudio de Factibilidad. 	 Aunque el CEA inicio gestiones para financiamiento con el BID, las mismas estan paralizadas en la actualidad.

	r 1
	- 1
	, 1
	<u>-</u> 1 • 1
	F
	• 1
	r
	•
	•
	• 1
	- 1
	•
	, ,
	- -
	F 1
	b .
	•
	1 -
	L
	_
	_
	[-

PROYECTOS DE ENERGIA SOLAR

PROYECTO	 08JET1VOS	CARACTERISTICAS TECHICAS	00810	ESTADO ACTUAL	OBSERVACIONES
Calentador solar de agua termosifon.	Desarrollar calen- tador solar compe- titivo pera uso do- mestico y comercial.	Colector de 1,8 m^2 y tanque de 228 litros. Eficiencia de captacion de 38%.	De ROS 1,400 a ROS 2,800. (1967)	Tecnologia probada por el INDOTEC ba- jo programa PAES.	Hasta 1987 se habian instalado 5,000 unidades (90/mes). Para hoteles se habian instalado 50 unidades grandes.
Desal inizador Solar de agua potable.	Abastecer de agua potable a comunidades rurales.	Tecnica destilacion solar de lefecto simple. Prototipo de- laarrollado por IMDOTEC de concreto y vidrio tipo ban- con agua de mar.	RDS 121/m^2 RDS 0.08/Litro. (1967)	Tecnologia probada por el INDOTEC ba- jo programa PAES.	
Secador solar de granos. 		Colector de 10 m²2; tempera- tura maxima bandeja de 52°C. Reduce humedad hasta 13.4% en 20 horas de sol.	RDS 5,130 (83% ma- teriales y 13% mano de obra. (1967)	Tecnologia probada por el INDOTEC ba- jo programa PAES.	El grano utilizado en las pruebas fue el maiz.
Secador sotar de pescado.	 Ofertar tecnologia alternativa eficiente y a bajo costo.	Carga de1.5 a 2 quintales se seca en 20 horas de sol.	RD\$ 801/Ton. met.	Tecnologia probada por el IMDOTEC ba- jo programa PAES.	El sistema es competitivo. El costo del sistema convencional es de RD\$ 2,146/Tm.
Sistems fotovol- taico de bombeo.		Bombeo de 50 m²3 de agua bajo radiacion de 5 kWh/m²2.	RDS 0.64/m3 (1987)	Tecnologia probada por el IMDOTEC ba- jo programa PAES.	El costo resultante es superior al de
Legunes solares.		Vida util de 30 años. Factor da uso de 80%.	RD\$ 0.18/kith en corto plazo y RD\$ 0.35 largo plazo.	Estudio de Prefactibilidad Terminado	El costo arrojado por el estudio resulta competitivo en relacion con los niveles tarifarios de la CDE.

•		•	e 1
			1
			'
			1
			<u>!</u> .
			₹ 1
			•
			_
			•
			ĺ
			F.
			_
			•
			r
			1
			•
			1
			, 1
			1 .
			•
			_ 1
			<u>.</u>
			i
			F-1
			L
			1
			r 1
			1
			- 1
			r -
			L -
			-
			[
			k .
			_
			ال. م
			L 1
			1
			r -4
			1
			- 1
			j
			-
			_]
			المساح
			<u>k</u> ,
			ļ

PROYECTOS DE ENERGIA SOLAR (CONT.)

PROYECTO	08JETIVOS	CARACTERISTICAS	00\$10	ESTADO ACTUAL	OBSERVACIONES
Planta solar de Neyba.					
Planta solar de Montecristi.					
Electrif. Rural con Paneles Solares.	Llevar la electricidad a zonas urbanas no con templadas en expansion de redes de la CDE.		Para 48 vatios US\$ 600 (6 kWh/mes).		Electrificada comu- Iniciado en 1985 por EMERSOL, Inc. nidad Bella Vista Esta hoy bajo responsabilidad de la (Sosua) y en expan- ADESOL. sion hacia otras
Cercas energi- Zadas con pe- neles solares.	 Sustituir alambres de Panel de pues en fincas gana- 40 Km de deras.	 Panel de 12 voltios puede alim RD\$ 10,000 para 40 Km de cerca. sistama complet incluye instal.	RD\$ 10,000 para sistama completo, incluye instal.	 Nay varios modelos en uso en el pais. 	

, , , , , ,	
	-
	•
	•
	'
	•
	•
	r '
	•
	<u>.</u>
	1
	ر ا
	L 1
	i,
	۲_
	1

PROYECTOS DE BIOGAS

PROYECTO		•	00810	ESTADO ACTUAL	RACTERISTICAS ESTADO COSTO COSTO ACTUAL OBSERVACIONES
Proyectos de COENER	Sustitucion de fuentes Planta pr energia en medio rural en base 		 RD\$ 6,642 (1981) 	El proyecto ha sido descontinuado.	

PROYECTOS DE ENERGIA EOLICA

PROYECTO	CA OBJETIVOS CA	CARACTERISTICAS TECNICAS	COST0	ESTADO ACTUAL	RACTERISTICAS ESTADO OBSERVACIONES TECNICAS OBSERVACIONES
tos Rurales	Acueductos Rurales Abastecim. agua a co- 270 molin	 270 molinos beneficiaran		 En desarrollo.	
نے جہ	munidades de 200 - 400 habitantes con molinos	munidades de 200 - 400 77,000 personas. Pro- habitantes con molínos grama complementa Plan Naciona			
	de viento.	Acueductos Rurales (PLANAR).		-	

	_ 1.
	~
	^ '¶
	_
	,
	_
	Ţ
	ا در پ
	4
	- ;
	_
	J.
	_ _
	~J. _▲
	_ _ _
	 _ ≜
	_
	. 4
	_•
	⊸ .
	مسلم المام
	ماري همد
	<u>ب</u> ز -

PECUEÑAS CENTRALES HIDROELECTRICAS

PROYECTO	OBJETIVOS	CAR	 costo		
0 0 0 0 0 0 0 0					
				. -	

	7	,
	- 1	l
	1	J
	- 1	
	7	
	-	ļ
	<u>.</u>	
	- 1	1
	r	
	ĺ	
	•	
	•	
	, 4 1	•
		ļ
		1
	, .	
	:	į
	4. 1	١
	4	•
	Ł 1	1
	- 4	ı
	L 1	
	`]	
	-	

4.3 Políticas

4.3.1 Estrategia Global de Desarrollo

Agricultura e Industrias equilibradas con acento puesto en el desarrollo rural integral.

4.3.2 Estrategia Global del Sector Energético

Corto Plazo: Hacer frente a las facturaciones de petróleo tratando de reducir al mínimo el efecto adverso sobre el desarrollo

económico.

Largo Plazo: Llevar a cabo una transición ordenada hacia un régimen modificado de suministro y de uso de la energía que implicará: costos relativos más altos, diferentes demandas de recursos y modificaciones en

las estrategias de desarrollo.

4.3.3 Políticas

- i. Mejoramiento de la eficiencia energética.
- ii. Incremento de los suministros de energía para el remplazo del petróleo.
- iii. Inserción de la energía dentro de objetivos de desarrollo más amplios.

	1
	<i>-</i> '
	→ 1
	- 1
	- 1
	_
	:
	₩ 1
	į
	_
	-
	_
	•
	- 1
	1
	▶ 1
	r '
	!
	b. 1
	_ 1
	- 4
	4 1
	- ,
	, 1
	i
	in. 1
	· ·
	[
	• 1
	1
	- 1
	1
	i ♣. 1
	, 1
	1
	<u>• 1</u>
	F 4
	!
	-
	ال. ـ
	L 1
	ا ـــــا
	* 1
	1-
	L.
	•
	}
	L 1

4.3.4 Matriz de Políticas

		_
		-
		ŗ
		;
		•
	*	_
		•
		r
		,
		_
		<u></u>
		.
		_
		ĩ
		•
		•
		•
		1
		L
		L
		L
		Ĺ
		L
		L
		i
		ı
		, -
		t
		-
		1.
		,
		•
		L. .

4.3.4 Matriz de Políticas

		!	!	1	!	<u>.</u>
ARIOS		SEA	plan	COENER/Secret Ind y Com/Ref Dom de Petró- leo	COENER/Secret Ind y Com/CDE	
COMENTARIOS	COENER	COENER/SEA	COENER/Plan Sierra	ENER/S	COENER/S	
ŏ		Ö	81.00	1	8 5	
ACCION	Realizar encuestas de uso de energía en el medio rural y en las operaciones agrícolas y pecua- rias	Realizar un Estudio del Transporte (personal y de productos) en el Sector Agropecuario	Activar el Programa de Mejoramiento de Hornos de Carbón Vegetal de Alta Eficiencia	Revisar la Estruc- tura de los Precios Energéticos	Revisar y actuali- zar las Normas y los Procedimientos existentes	Continuar el Progra- ma de Desarrollo de Madera como Combus- tible (ISA)
SUGERENCIA	Conocer cuánta energía se usa y dónde se usa	Programar Nue- vas Inversiones en Tecnologías que Ahorren Energía	Incrementar la Eficiencia del Uso de la Leña Y el Carbón	Brindar Varia- ciones Atracti- vas en Materia de Precios de Energía	Normas para lo- grar la Conser- vación de la Energía	Volver a evaluar los recursos energéticos de biomasa
PROBLEMA	Baja Eficiencia Energética					Bajo Nivel de Conocimiento de las Reservas Energéticas Na- cionales
AREA	Energía					

	•	
		-
		7
		_
		1
		_
		-
		(Bet
		_
		-
		7
		-
		_
		a.
		_
		_
		1
		b.
		r
		r
		_
		_
		!
		-
		ı
		(
		,
		-

4.3.4 Matriz de Políticas

SUGERENCIA ACCION COMENTARIOS	Avanzar en el Continuar la 2da. Solicitar la uso de energía Fase del Estudio de continuación geotérmica con Factibilidad en la de la asistencriterio conser- Zona de Las Yayas- cia financiera vador Constanza de Italia	Examinar otra Preparar un Progra- Con la parti- vez el poten- ma Nacional de Des- cipación del cial hidro arrollo Hidroeléc- sector público eléctrico na- trico Nacional y privado cional	Promover el uso Continuar el Pro- Buscar finan- de la biomasa yecto de la Planta ciamiento en los sectores Dendrotérmica de modernos (gene- Pedernales (3 MW) ración de elec-	Preparar Proyecto de utilización di- recta del bagazo de caña en la Planta Turbogas de Baraho-	Promover el uso Promover el esta- de la biomasa blecimiento de Fá- en los sectores bricas de Briquetas modernos en base a desechos agrícolas (arroz,
SOC	i I				Promcde 12 modes
PROBLEMA	Bajo Nivel de Conocimiento de las Reservas Energéticas Na- cionales	Lentitud en el desarrollo del potencial hidro- eléctrico	Bajo Nivel de Aprovechamiento de los Recursos Energéticos Na- cionales		
AREA	Energía				

	- •
	ra g
	. 1 1
	_ 1. • स
	, î.
	_ 4.
	11
	_ 1
	1
	- Å
	-7
	7
	A
	Ţ
	. ફ ા
	I
	l.
	1
	: •
	ĻĹ
	; ; •
	•

		. 0	.
COMENTA	RD/INDOTEC y Gobierno del Brasil	Con la parti- cipación del Sector Privado	Actualizar el Estudio de Factibilidad de Harza/CDE para la búsque da de financia miento
	Apoyar el Programa Cooperación dirigi- do a la producción y el uso de alcohol como combustible	Continuar el Pro- grama de Fincas de Energía de COENER/ CONATEF	Iniciar el 2do. Plan Nacional de Electrificación Rural de CDE
SUGERENCIA	Explorar la op- ción del combus- tible alcohol para el trans- porte	R B C C C C C C C C C C C C C C C C C C	cer el ollo r al. lar la tivida dimien la med irriga ecer e ecer e ecer e dustri s. los n de vid
PROBLEMA	Bajo Nivel de Aprovechamiento de los Recursos Energéticos Na- cionales		
AREA	Energía		Energía Rural

1 •

COMENTARIOS	Granjas Porci- nas. Sector Privado	Por el Sector Privado y las - Organizaciones No Gubernamen- tales (ONG)	cipación del Sector Privado	s- pación de los sectores Pú- blico (INDRHI, CDE), Privado y las Organi- zaciones No Gubernamenta- les (ONG)
ACCION	Promover el biogas como empresa comer- cial a gran escala	Promover el uso de celdas fotovoltai- cas para electrifi cación rural	Continuar el Progra ma de Aprovecha miento de la Ener- gia Solar (PAES) de INDOTEC	Preparar un Progra- ma Nacional de Des- arrollo Minihidro- eléctrico
SUGERENCIA	Asegurarse de que las tecnolo- gías apropiadas lo sean auténti- camente		Revisar las tec- nologías energé- ticas comunales en relación con las metas nacio- nales de plani- ficación	
PROBLEMA	Selección del tipo de tecnolo- gía			
AREA	Energía Rural			

		r
		•
		_
		r
		•
		r
		•
		_
		•
	•	_
		•
		•
		_
		r
		•
		_
		•
		•
		r
		_
		_
		•
		· •
		•
		r
		<u>.</u>
		-
		h
		Ĺ.
		<u>.</u>
		r '
		•
		Ĺ,
		•
		ــ ــر
		r ~
		•
		ہ ے
		1
		ik j
		i
		ا ا
		*·]
•		
•		
		L ,
		,

4.3.4 Matriz de Políticas

	!	!	 	
COMENTARIOS	COENER Y ONAPLAN	ONAPLAN	ONAPLAN	COENER
ACCION	Preparar un Plan Nacional de Inver- sión para Energía	Revisar los planes de desarrollo donde la energía pueda llegar a ser un fac tor importante	Revisar las conse- cuencias energéti- cas de continuar los planes existen- tes	Examinar las pro- puestas de subsi- dios destinados a la autosuficiencia energética
SUGERENCIA	Integrar la pla- F nificación del N sector energéti- s co en las estra- tegias más am- plias de desarro llo			No buscar la autosuficiencia energética sin pensar en el costo
PROBLEMA	Falta de estra- tegia global			Limitaciones pa- ra el aprovecha- miento económico de los recursos energéticos na- cionales
AREA	Energía Rural			

	ا م
	÷ 1
	, 1
	•
	•
	• · · · · · · · · · · · · · · · · · · ·
	r
	•
	r
	• 1
	<u></u>
	• 1
	* '
	1 د بر
	,
	• 1
	, .
	i b. 1
	ί,
	k. 1
	in. 1
	, , , , , , , , , , , , , , , , , , ,
	-
	· 1
	<u>.</u>
	[]
	<u>• </u>
	{ -
	*
	~

5. BIBLIOGRAFIA

- 1. Bailey, R. E., Fynn, R. P. y Tello, F. Estudio de Prefactibilidad para la generación de electricidad en base a lagunas solares. En: Programa de aprovechamiento de la Energía solar en la República Dominicana (PAES). Banco Central de la República Dominicana Banco Interamericano de Desarrollo (BID)-Instituto Dominicano de Tecnología (INDOTEC), Santo Domingo, 1987.
- 2. Banco Central de la República Dominicana, Banco Interamericano de Desarrollo e Instituto Dominicano de Tecnología. Programa Aprovechamiento de la Energía Solar (PAES) en la República Dominicana.
 Ohio State University, 1987.
- 3. Batty, J. C.; Hamad, Safa N. and Keller, Jack. <u>Energy Inputs to Irrigation</u>.

 Utah State University, Utah, United States of America, 1974.

 25 pp.
- 4. Bazan, G. y González, E. <u>El trinomio Energía, Medio</u>
 <u>Ambiente y Ahorro de Energía en America Latina.</u>
 1992.
- 5. Bueno, Santiago Wigberto; Checo, Humberto A. y Reynoso, Franklin A. Análisis del Consumo Energético de Familias Pobres en una Comunidad Rural Serrana. [Instituto Nacional de Agricultura, ISA. Nota Técnica No. 8]. S. d., 1985.
- 6. Comisión Nacional de Política Energética (COENER).

 Boletín Estadístico del Sector Energía de la República
 Dominicana. Número 18:1985-1987.

 Santo Domingo, República Dominicana, s. d.
 59 pp.
- 7. Comisión Nacional de Política Energética (COENER).

 <u>Boletín Estadístico del Sector Energía de la República Dominicana. Número 19.</u>

 Santo Domingo, República Dominicana, s. d.

 67 pp.
- 8. Comisión Nacional de Política Energética (COENER).

 <u>Boletín Estadístico del Sector Energía de la República Dominicana. Número 20.</u>

 Santo Domingo, República Dominicana, 1992.

 54 pp.

			r 1
		·	
			,
			•
			•
			<i>r</i> '
			•
			τ '
			•
			:
			b a 1
			- 1
			i •• 1
			, ,
			t u 1
			• •
			· 4u 1
			i. I
			j. 1
			L 1
			r- •
			,
			ù (
			;
			(-
			•
			• سو
			•
			b. .
			6.)

- 9. Comisión Nacional de Política Energética (COENER), Energy Development International (EDI), Gordian Associates Incorporated y Louis Berger International, Inc. Estrategias Energéticas para la República Dominicana. Informe de la Evaluación Energética Nacional. Servicios Gráficos Integrados, Santo Domingo, República Dominicana, 1980.

 109 pp.
- 9a. Consejo Estatal del Azúcar. <u>Estudio de Prefactibilidad para el Establecimiento de una Finca Energética en Villa Altagracia.</u>
 S. e., s. l., s. a.
 53 pp.
- 10. Corporación Dominicana de Electricidad, Cassaza, Schultz and Assocs y Burns and Roe, Inc. <u>Desarrollo del plan de expansión del sistema.</u>
 Santo Domingo, 1985.
- 11. Corporación Dominicana de Electricidad. Dirección de Energía No Convencional. Plan de adición de unidades considerando fuentes de energía no convencionales. 1981.
- 12. Corporación Dominicana de Electricidad y Harza Engineering Company. Plan de Electrificación Rural 1986-2006. Primera Etapa de Cinco Años. Volumen I. S. n., Santo Domingo, República Dominicana, 1985.
- 13. Corporación Dominicana de Electricidad y Harza Engineering Company. Proyecto de Electrificación Rural 1983-2003. Primera Etapa Plan de Cinco Años. Volumen II.
 S. n., Santo Domingo, República Dominicana, 1984.
- 14. Corporación Dominicana de Electricidad (CDE), Oficina Nacional de Planificación (ONAPLAN) y Organización de Estados Americanos (OEA). Estudio de Factibilidad de la Planta Dendrotérmica de Pedernales. Informe Final. S. n., Santo Domingo, República Dominicana, 1986.
- 15. Díaz J., Clime, P. y Peralta, P. <u>Uso de gas metano en la comunidad de La Zanja.</u>
 COENER, 1985.
- 16. Dunkerley, Joy; Ramsay, William; Gordon, Lincoln y Cecelski, Elizabeth. <u>Estrategias Energéticas para los Países en Desarrollo.</u>
 Ediciones Aragón, Buenos Aires, Argentina, 1985.
 255 pp.

•	
	• •
	÷
	• .1
	- 1
	.1
	. 1
	1 .1
	• "
	· • 1
	. 4
	(. '
	. 4
	(2)
	Ā
	1
	174
	6.4
	.
	*¶
	٠.
	L. 1
	(
	L .
	()(
	A.
	ن ا د
	2

- 17. Durst, Patrick B. Energy Plantations in the Republic of the Philippines. [Research Paper SE-265].

 U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, North Carolina, United States of America, 1987.

 17 pp.
- 18. Encarnación, J. J., Tello, F., Barrientos, W. y Tangui, C. Planta Fotovoltaica para el bombeo de agua. En:

 Programa de aprovechamiento le la Energía solar en la República Dominicana (PATE Banco Central de la Registra Dominicana Banco Interamericano de Desarrollo (BID)-Instituto Dominicano de Tecnología (INDOTEC), Santo Domingo, 1987.
- 19. ESMAP. <u>Dominican Republic: issues and options in the energy sector.</u>
 [Report No. 8234-DO]. May 1991.
- 20. Estrella, S. "El bosque dominicano. Empresa protege el bosque con el uso de variados residuos". Listín Diario, Santo Domingo, No. XIII, 1 de agosto de 1992.
- 21. Fadón, J. I. <u>Planificación y ordenación de la cuenca de Sabaneta</u>. [Ponencia] En: <u>Segundo Encuentro Científico Humanidad y Naturaleza</u>.

 Santo Domingo, 22 de marzo de 1991.
- 21a. García, Ivonne. La mujer y el impacto de la escasez de leña y carbón.

 [Ponencia] En: Mujer, Desarrollo y Alternativas Energéticas: Fuentes de Energía Nuevas y Renovables.

 Dirección General de Promoción de la Mujer (DGPM)-INSTRAW, Santo Domingo, Diciembre de 1990.

 15 pp.
- 22. Hamrick, J. T. <u>Development of biomass as an alternative fuel for gas turbines.</u>
 [Prepared by Aerospace Research Corporation for Pacific Northwest Laboratory under Contract DE-AC06-76RLO 1830 with the U.S. Department of Energy under agreement 005824-A-C.]
 April 1991.
- 23. Hansen, R. <u>Solar-based rural en dification in the Dominican Republic.</u>
 Finnish Workshop, Kuala Lumpur, Oct. 1991.

		- 1
		- 1
		-ı i
		_
		•• !
		_
		* 1
		-
		-
		5 a
		1.
		_ (
		1-
		1
		• !
		- '
		6- !
		4
		1
		14.
		.
		.
		L !
		🕶
		. .
		€a.
		L 1
		k 1

- 24. Instituto de Estudios de Población y Desarrollo (IEPD) y Comisión Nacional de Política Energética (COENER). Población y Energía en la República Dominicana: 1990-2000. Estudio No. 4. Editorial Gente, Santo Domingo, República Dominicana, 1985.
 89 pp.
- 25. Lahmeyer International Gmbh y Supervisores y Consultores Asociados (SCA). Estudio de Factibilidad y Diseño Definitivo del Proyecto con Schrico Nizaito. Tomo I: Informe de Factibilidad S. n., s. l., 1989.
- 26. Lamarche, Oscar. <u>Experiencias y perspectivas del ahorro y conservación de la energía.</u>
 Santo Domingo, 1992.
- 27. Luciano, Olga. La mujer dominicana dentro de la política energética. [Ponencia] En: Mujer, Desarrollo y Alternativas Energéticas: Fuentes de Energía Nuevas y Renovables.

 Dirección General de Promoción de la Mujer (DGPM)-INSTRAW, Santo Domingo, Diciembre de 1990.
- 28. Martínez Frances, Eduardo. <u>Desarrollo Eléctrico</u>
 <u>Dominicano. Pasado, Presente y Futuro.</u>

 Talleres Gráficos Mograf, Santo Domingo, República
 Dominicana, 1992.

 43 pp.
- 29. Muñoz Malo, Joaquín. <u>Recursos Naturales Renovables.</u>

 <u>Problemática Forestal en República Dominicana.</u>

 Estudios y Proyectos Técnicos Industriales, S. A.,

 (EPTISA), Madrid(?), 1992.

 s.p.
- 30. Organización Latinoamericana de Energía (OLADE). <u>Balances</u>
 <u>Energéticos de América Latina.</u>
 Artes Gráficas Señal, Quito, Ecuador, 1981.
 384 pp.
- 31. Peláez, R. Secador solar de Pescado. En: <u>Programa de aprovechamiento de la Energía solar en la República Dominicana (PAES).</u>

 Banco Central de la Repúblic minicana Banco Interamericano de Desarrollo (BID)-Instituto Dominicano de Tecnología (INDOTEC), Santo Domingo, 1987.
- 32. Powell, S. "Brasil hacia caña de azúcar como fuente energía".El Siglo, Santo Domingo, 30 de agosto de 1990.

	•	,
		-
		N
		_
		-
		. •
		•
,		-
		**
		ia
		₩
		-
		•
		_
		'-
		•
		-
		١ سه
		4
		-
		<u>ــ</u> ــــ
		ر ن
		- -
		u u
		نه ج
		-
		. =
		-
		, -
		•
		6 1
		• 1 1

- 33. República Dominicana. <u>Informe Nacional Conferencia</u>
 <u>Mundial de las Naciones Unidas sobre Medio Ambiente y Desarrollo Brasil '92.</u>
 Santo Domingo, 1991.
- 34. Rocheleau, Dianne E. <u>An Ecological Analysis of Soil and Water Conservation in Hillslope Farming Systems: Plan Sierra, Dominican Republic.</u> University Microfilms International, Michigan, 1987. 420 pp.
- 35. Rodríguez, B. Planta solar térmica para bombeo de agua. En: Programa de aprovechamiento de la Energía solar en la República Dominicana (PAES).

 Banco Central de la República Dominicana Banco Interamericano de Desarrollo (BID)-Instituto Dominicano de Tecnología (INDOTEC), Santo Domingo, 1987.
- 36. Rodríguez, R. Sistema de desalinización de agua para uso potable en las zonas rurales. En: Programa de aprovechamiento de la Energía solar en la República Dominicana (PAES).

 Banco Central de la República Dominicana Banco Interamericano de Desarrollo (BID)-Instituto Dominicano de Tecnología (INDOTEC), Santo Domingo, 1987.
- 36a. Santana, Isidoro y Rathe, Magdalena. <u>Impacto de la Gestión Fiscal en la República Dominicana.</u>
 Taller, Santo Domingo, 1992.
- 37. SEA; SURENA y MARENA. <u>Seminario Nacional de Conservación de Tierras y Aguas.</u>
 1985.
- 38. Suero, J. "Los molinos de viento".

 Ultima Hora, Santo Domingo, 14 de enero de 1985.
- 39. Tello, F. Medición y evaluación de la radiación solar en Santo Domingo. En: <u>Programa de aprovechamiento de la Energía solar en la República Dominicana (PAES).</u>
 Banco Central de la República Dominicana Banco Interamericano de Desarrollo (BID)-Instituto Dominicano de Tecnología (INDOTEC), Santo Domingo, 1987.
- 40. Trehan, Ranvir K.; Newman, Lawrence y Park, Wayne R. Potencial para el Desarrollo de Fincas de Energía en la República Dominicana. Un Análisis Preliminar. Servicios Gráficos Integrados, Santo Domingo, República Dominicana, 1981.
 73 pp. más Anexos.

14-1

- 41. Yepes, J. Secador solar de granos. En: Programa de aprovechamiento de la Energía solar en la República Dominicana (PAES).

 Banco Central de la República Dominicana Banco Interamericano de Desarrollo (BID)-Instituto Dominicano de Tecnología (INDOTEC), Santo Domingo, 1987.
- 42. "Agencia dona RD\$ 30 millones a INDESUR para proyecto manejo de bosques secos".El Siglo, Santo Domingo, 30 de julio de 1992.

1-1

INDICE DE CUADROS

- 1. República Dominicana: Oferta de Energía Primaria. 1973, 1977, 1980 y 1985-1991. (En Miles de TEP).
- 2. República Dominicana: Oferta de Energía Secundaria. 1973, 1977, 1980 y 1985-1991. (En Miles de TEP).
- 3. República Dominicana: Oferta Interna Bruta de Petróleo Crudo y Derivados y Oferta Interna Bruta Total. 1980 y 1985-1991. (En Barriles de Petróleo).
- 3-A. República Dominicana: Participación de las Importaciones de Petróleo Crudo en relación al Total de las Importaciones de Petróleo Crudo y Derivados del Petróleo. 1980-1991. (En Miles de Barriles de Galones Americanos).
- 3-B. República Dominicana: Participación del Valor de las Importaciones de Petróleo Crudo en relación al Total del Valor de las Importaciones de Petróleo Crudo y Derivados del Petróleo. 1980-1991. (En Miles de Dólares).
- 3-C. República Dominicana: Participación del Valor de las Importaciones de Petróleo Crudo y Derivados en relación al Valor de las Importaciones Totales. 1980-1991. (En Miles de Dólares).
- 4. República Dominicana: Producción Interna de Leña y Combustibles Vegetales y Animales y Porcentajes respecto a la Oferta Total de Energía Primaria. 1980 y 1985-1991. (En TEP).
- 5. República Dominicana: Producción Interna de Carbón Vegetal y Porcentajes respecto a la Oferta Total de Energía Secundaria. 1980 y 1985-1991. (En TEP).
- 6. República Dominicana: Consumo Final Energético por Sectores. 1973, 1977, 1980 y 1989-1991. (En Miles de TEP).
- 7. República Dominicana: Consumo Final de Energía: Total y Sector Agropecuario. 1980 y 1985-1991. (En TEP).
- 8. Centroamérica y El Caribe: Consumo Final de Energía: Total y Sector Agropecuario. 1980. (En TEP).
- 9. República Dominicana: Estructura del Consumo de Energéticos por Sectores. 1973, 1977, 1980 y 1989-1991. (En Miles de TEP).
- 10. Estados Unidos: Insumos Energéticos Anuales Totales por hectárea irrigada para nueve sistemas de riego basados en requerimientos netos de riego de 915 mm y elevación cero de bombeo. En Miles de Kilocalorías (o en Galones de Gasoil).

	- ·	
		_
		•
		-
		•
		-
		•
		r
		*
		•
		77
		-
		• •
		-
		_
		• •
		٠.
		-
		٠, .
		-
		_
		į
		-
		<u> </u>
		: L
		_

- 11. República Dominicana: Cultivos de Arroz y Carga Potencial de Molinos. 1985.
- 12. Distribución Porcentual de Viviendas Particulares por Tipo de Energético Consumido para Iluminación y Otros Usos en la Zona Rural, según Nivel de Ingreso y Región: 1981.
- 13. Distribución Porcentual de Viviendas Particulares por Tipo de Energético Consumido para Cocción de Alimentos y Otros Usos en la Zona Rural, según Nivel de Ingreso y Región: 1981.
- 14. Porcentaje de Viviendas que Disponen de Artefactos Domésticos en el Total del País, por Zonas y Regiones: 1981.
- 15. Consumo de Energía Eléctrica de las Viviendas Particulares para Iluminación y Otros Usos, según Nivel de Ingreso, Zona y Región: 1981. (En Miles de kWh/año).
- 16. Consumo de Energía de las Viviendas Particulares para Cocción de Alimentos y Otros Usos en la Zona Rural, según Nivel de Ingreso y Región: 1981. (En Miles de BEP).
- 17. Consumo Doméstico Per Cápita de Energía Final y Util para Iluminación, Cocción de Alimentos y Otros Usos para el Total del País, según Nivel de Ingreso: 1981. (En GEP/año).
- 18. Consumo Doméstico Per Cápita de Energía Final para Iluminación, Cocción de Alimentos y Otros Usos para el Total del País, Región y Zona: 1981. (En GEP/año).
- 19. Comparación de las Estimaciones del Informe COENER-EDI: 1977, 1978, 1990 y 2000. (En Miles de TEP).
- 20. República Dominicana: Proyecciones de Demanda Energética para los Hogares Rurales. 1978 (real), 1990 y 2000 (Proyecciones del Caso Base). (En Miles de Barriles Equivalentes de Petróleo).
- 21. República Dominicana: Proyecciones de la Demanda de Energía para la Agricultura. 1978 (real), 1990 y 2000 (Proyecciones del Caso Base). (En Miles de Barriles Equivalentes de Petróleo).
- 22. Plan para el Mejoramiento y la Expansión del Sistema de Electrificación Rural de la República Dominicana (1986-1991).
- 23. República Dominicana: Estructura de los Precios de los Combustibles. 1991. (En RD\$/Galón).

		- •	
			ģe.
			•-
			_
	•		•
			•
			**
			•
			_
			1.,
			_
			•
			-
			61 /
			-
			• ,
			-
			. .
·			_
			4.1
			•
			ديا
			•
			-
			(
			_
			-
			_
			•
			_
			_
			-

Cuadro No. 1
REPUBLICA DOMINICANA: OFERTA DE ENERGIA PRIMARIA
1973, 1977, 1980 y 1985-1991
(En Miles de TEP)

	₩ * ******	
		•
		_
		1
		•
		4
		1
		"
		† 1
		•
		r
		4
		•
		II.
		. '
		1
		1
		·
		1
		4
		1
		4
		•
		1
		1
		1
		_1
		:
		1 1
	•	
		1
		1
		i I
		T.

Cuadro No. 2
REPUBLICA DOMINICANA: OFERTA DE ENERGIA SECUNDARIA
1973, 1977, 1980 y 1985-1991
(En Miles de TEP)

Años	73	77	80	85	86	87	88	88	06	91
GASOLINA, NAFTA	490	540	447	505	528	667	530	1,068	720	702
Refinación	483	536	442	498	494	583	358	872	421	472
Import. (Exp.)	7	4	5	7	34	84	172	196	299	230
COMBS. PESADOS	758	775	984	841	1,151	552	1,196	1,090	1,108	1,239
Refinación	445	571	528	504	701	469	740	778	747	917
Import. (Exp.)	313	204	456	337	450	83	456	312	361	322
CARBON VEGETAL Refinación Import. (Exp.)	304 304	367 368 (1)	467	149 149 -	146 146 -	71 71 -	72 7	72 72 1	77 _	74
DIESEL, GAS OIL	189	374	401	358	487	599	697	690	755	686
Refinación	150	362	398	340	420	440	344	306	263	384
Import. (Exp.)	39	11.8	3	18	67	159	353	384	49 2	302
OTROS Refinación Import. (Exp.)	253 288 258	277	412 378 34	3 9 2 2 2 8 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8	607 372	641 401	521	544 142	572	555
TOTAL	1,994	2,333	2,711	2,445	2,919	2,546	3,016	3,464	3,232	3,256
Producción	1,610	2,114	2,213	1,990	2,274	2,110	1,912	2,430	1,878	2,299
Import. (Exp.)	384	220	498	455	645	436	1,104	1,044	1,354	957

	-
	•
	•
·	
	-
	ı
	ŧ
	-
	١,
	٠,
	- 1
	•
	- 4
	1
	1
	- 4
	•
	•

Cuadro No. 3
REP. DOM.: OFERTA INTERNA BRUTA DE PETROLEO CRUDO Y DERIVADOS
Y OFERTA INTERNA BRUTA TOTAL
1980, 1985-1991
(En Barriles de Petróleo)

Partic. Porcent.	49.54		63.06					
Oferta Int. Bruta Total	30,374,540	26,078,640	28,186,880	27,587,620	30,547,820	29,999,100	29,753,620	30,670,560
Oferta Int. Oferta Int. B. Oferta Int. Bruta Deriv. Petról. y Der. Bruta Total	15,046,480							21,674,440
Oferta Int. Bruta Deriv.	3,595,560							6,909,540
Años Oferta Int. Bruta Petról.	11,450,920	12,418,400	13,118,740	13,898,500	13,111,520	13,797,420	11,169,340	14,764,900
Años	1980 1981 1982 1983	1984	1986	1987	1988	1989	1990	1991

		7
		1
		7
		,
		3
		•
		•
		,
		,
		ı
		_
		- '
		4
		- •
•		
		•
		•
		<u>.</u> .
		-
		•
		•
		•
		-
		•
		-
		•

PETROLEO CRUDO EN RELACION AL TOTAL DE LAS IMPORTACIONES DE PETROLEO CRUDO Y DERIVADOS DEL PETROLEO, 1980-1991 (En Miles de Barriles de Galones Americanos) REPUBLICA DOMINICANA: PARTICIPACION DE LAS IMPORTACIONES DE Cuadro No. 3-A

Años	de de	de de	Importac de	Imp Petról C
	Crudo	Derivados Petróleo	Y Deriv Petr	respecto a Total Import
	11,053.8	3,595.6	14,649.4	75.46
	11,800.0	800.	14,600.0	80.82
	10,000.0	100.	14,100.0	70.92
	11,500.0	,500.	16,000.0	71.88
	"	4,400.0	17,800.0	75.28
	7	,942.	n	80.97
	13,369.4	932.	7,301.	77.
	4	•	ത	72.
	3,165.	•	1,435.	61.
	13,800.0	•	~	63.59
1990	11,600.0	•	N	52.73
	14,700.0	8,500.0	23.200.0	63.36

Fuentes: OLADE, COENER. Balances Energéticos.
*IEPD-COENER. Población y Energía en la República Dominicana:
1990-2000. Estudio No. 4. (1985).

•
•
-
•
-
•
-
•
•
-
1
ţ
- '
•
•
•
•
•
:
•
,
j
ŗ

Cuadro No. 3-B
REPUBLICA DOMINICANA: PARTICIPACION DEL VALOR DE LAS IMPORTACIONES
DE PETROLEO CRUDO EN RELACION AL TOTAL DEL VALOR DE LAS IMPORTACIONES
DE PETROLEO CRUDO Y DERIVADOS DEL PETROLEO, 1980-1991 (En Miles de Dólares)

	Importac	Importac	Total	Part Porc
Años	đe	đe	Importac de	Imp Petról C
	Petróleo	Derivados	Petról Crudo	
	Crudo	Petróleo	y Deriv Petr	Total Import
1980	7,7	,400.	٦	•
1981*	8,6	, 500.	485,100.0	•
1982*	4,6	,300.	,900	•
1983*	7,8	.006,	,700.	•
1984*	6,6	,100.	577,000.0	•
1985	337,162.0	68,900.8	062.	83.03
1986	1,750.	,697.	44	•
1987	3,3	,440.	,819.	•
1988	5,1	,310.	,412.	•
1989	225,300.0	,300.	,600.	57.39
1990	5,000.	,600.	504,600.0	•
1661	260,000.0	194,200.0	454,200.0	•

Fuentes: OLADE, COENER. Balances Energéticos. *IEPD-COENER. Población y Energía en la República Dominicana: 1990-2000. Estudio No. 4. (1985).

	·	<u> </u>
		Ţ
		<u>. I</u>
		T
		Y
		_4
		1 9
		- 4
		,
		-
		_
		-
		•
		<u>.</u>
		-
		•
		L
		L
		-

Cuadro No. 3-C
REPUBLICA DOMINICANA: PARTICIPACION DEL VALOR DE LAS
IMPORTACIONES DE PETROLEO CRUDO Y DERIVADOS EN RELACION
AL VALOR DE LAS IMPORTACIONES TOTALES
(En Miles de Dólares)

λños	Importac Petróleo Crudo y Derivados	Importac Totales	Part Porc Imp Petr y Der respecto a Import Tot
1980*	448,600.0	1,498,400.0	29.94
1981*	497,400.0	1,450,200.0	34.30
1982*	449,500.0	1,255,800.0	35.79
1983*	461,600.0	1,279,000.0	36.09
1984*	506,000.0	1,257,100.0	40.25
1985	407,862.0	1,285,900.0	31.72
1986	234,837.2	1,266,200.0	18.55
1987	348,835.3	1,353,306.0	25.78
1988+	393,700.0	1,608,300.0	24.48
1989	405,000.0	1,964,000.0	20.62
1990	517,000.0	1,793,000.0	28.83
1991	419,000.0	1,713,000.0	24.46
		•	

⁺⁼ Inclue Lubricantes y Asfalto.

Fuentes: *Acción Empresarial. Impacto del Sector Privado en la Economía Dominicana. Segunda Edición, (1990). COENER. Boletines Estadísticos.

			_
			•
			_
			•
			_
			•
			_
			-
			_
			•
			-
			•
			-
			•
			-
			-
			h
			F
			•
			L
			b
			•
			•
			•
			-
			4

Cuadro No. 4

REP. DOM.: PRODUCCION INTERNA DE LEÑA Y COMBUSTIBLES VEGETALES Y ANIMALES Y PORCENTAJES RESP. A OFERTA TOTAL DE ENERGIA PRIMARIA 1981 (En Toneladas Equivalentes de Petróleo)

Años	Produc. de Leña	Produc. de (Combustibles Veg. y Anim.	Oferta Tot Energía Primaria	Part. Porc. Lena y Combs. en Of. Tot.
1980 1981 1982 1983	1,360,000	643,000	3,590,000	55.79
1984 1985	893,000		3,274,000	41.05
1986	903,000	450,000	3,330,000	40.63
1987	815,000		3,452,000	36.85
1988	833,000		3,182,000	34.10
1989	794,000		3,134,000	33.47
1990	859,000		2,743,000	38.75
1991p	859,000		3,318,000	32.04

p = Preliminar.
Fuente: OLADE, COENER. Balances Energéticos.

**	
	g
	* *
	1.1
	• .
	8 1
	-
	1.
	_
	-
	• •
	-
	-
	,
	ı
	ı
	•
	٠
	•
	1

REP. DOM.: PRODUCCION INTERNA DE CARBON VEGETAL Y PORCENTAJES RESPECTO A LA OFERTA TOTAL DE ENERGIA SECUNDARIA

1980 y 1985-1991 (En Toneladas Equivalentes de Petróleo)

Part. Porc. Carbón Veg. en Oferta Tot.	17.23	,	60.9	5.00	2.79	2.39	2.07	2.38	2.27
Oferta Tot. Energía Secundaria	2,711,000		2,445,000	2,919,000	2,546,000	3,016,000	3,474,000	3,232,000	3,256,000
Importac. Energía Secundaria	563,000		455,000	645,000	436,000	1,104,000	1,044,000	1,354,000	957,000
Oferta Int. Energía Secundaria	2,213,000		1,990,000	2,274,000	2,110,000	1,912,000	2,430,000	1,878,000	2,299,000
Produc. de Carbón Vegetal	467,000		149,000	146,000	71,000	72,000	72,000	77,000	74,000
Años	1980 1981 1982	1983	1985	1986	1987	1988	1989	1990	1991p

p = Preliminar.
Fuente: OLADE, COENER. Balances Energéticos.

-
ter.
-
■.
-
•
-
•
-
•.
_
V a
•
_
1.
-
1.
Le
 ·
-
•
•
•
ı
,
ه.
٠ ـــ ،
1
•

Cuadro No. 6
REPUBLICA DOMINICANA: CONSUMO FINAL ENERGETICO POR SECTORES (En Miles de TEP)

				•	 							
Años	1973	Porc	1977 Porc	Porc	1980 Porc	Porc	1989	Porc	1990 Porc	Porc	1991	Porc
Residencial, Comercial y Púb.	817	32.3	926	35.7 1,236	1,236	41.2 1,270	1,270	41.0	41.0 1,149	42.7	42.7 1,138	40.7
Transporte	597	23.6	663	24.2	24.2 635	21.2	21.2 1,116	36.0	36.0 906	33.7	804	28.8
Industrial y Min. 1,107	1,107	43.7	43.7 1,085	39.7	39.7 1,116	37.2	691	22.3	809	22.6	826	29.5
Agropecuario	10	4. 0	11	4.0	12	0.4	22	0.7	27	1.0	28	1.0
Total	2,531	100.0 2,735 100.0 2,999	2,735	100.0	2,999	100.0	100.0 3,099	100.0	100.0 2,690		100.0 2,796	100.0

Nota: Los valores de 1991 son preliminares.

-
•
-
.
•
_
h .
٠.
1
<u>.</u>
ı
à.
ı
•
ŧ
ا د
ı

Cuadro No. 7 REPUBLICA DOMINICANA: CONSUMO FINAL TOTAL DE ENERGIA Y CONSUMO FINAL DE ENERGIA DEL SECTOR AGROPECUARIO 1980 y 1985-1991 (En Barriles de Petróleo)

Cons. Final Sect. Agrop.	Cons. Final Total	Part. Porc. Sect. Agrop.
86,640	22,122,080	0.39
72,200	16,541,020	0.44
108,300	17,689,000	0.61
115,520	21,948,800	0.53
194,940	19,919,980	0.98
158,840	22,374,780	0.71
194,940	20,548,120	0.95
202,160	21,176,260	0.95
	72,200 108,300 115,520 194,940 158,840 194,940	Sect. Agrop. Total 86,640 22,122,080 72,200 16,541,020 108,300 17,689,000 115,520 21,948,800 194,940 19,919,980 158,840 22,374,780 194,940 20,548,120

p= Preliminar.
Fuente: OLADE, COENER. Balances Energéticos.

	Ţ
	7
	7
	-
	Ļ
	<u> </u>
	ل
	I
	7
	Ť
	- 47
	له
	_ _
	ل.
	_
	Ţ
	7
	Ψ'
	_
	ng '
	<u> </u>
	n g
	,-
	• • • • • • • • • • • • • • • • • • •
	i ∓
	•
	۷ ,
	A
	4
	• 1
	4
	4.1
	4
	. 1
	·

Cuadro No. 8
CENTRO AMERICA Y EL CARIBE, CONSUMO FINAL DE ENERGIA:
TOTAL Y SECTOR AGROPECUARIO, 1980
(En Toneladas Equivalentes de Petróleo)

nd= Información no disponible. Fuente: OLADE, COENER. Balances Energéticos, 1981.

	.,
	_
	•
	_
	_
	•
	_
	1
	_
	•
	-
	•
	•
	,
	- 1
	j
	١,
	• •
	i.
	L.
	*
	4.4
	t.
	ı.
	٠
	:

Cuadro No. 9
REPUBLICA DOMINICANA: ESTRUCTURA DEL CONSUMO POR SECTORES (En Miles de TEP)

Años	1973	Porc.	1977	Porc.	1980	Porc.	1989	Porc.	1990	Porc.	1661	Porc.
RES., COMERC. Y PUBLICO	817	100	916	100	1,236	100	7	100	4	100	က	100
Leña	339	41	407	4		41						
Carbón Veg.	304	37	368	38	467	38	1	ø	77	7		7
Gas Licuado	67	ω	72	7	100	.∞	0	Φ	86	7		9
Otros	107	13	130	13	160	13	587	46	436	38		39
TRANSPORTE	597	100	663	100	ന	100	ß	100	4	100	വ	100
Gasol., Naftas	477	80	516	78	438	69	78	74	519	19	410	52
Diesel, Gas oil	112	19	140	21	186	53	268	25		38	336	45
Combs. Pesados	Φ	-	7	-	11	~	က	0	7	0	4	-
INDUST. Y MIN.	1,107	100	1,085	100	1,116	100	ത	100	0	100	~	100
Otros Combs. VA	617	26	657	61	589	53	207	30	191	56	191	19
Pesad	396	36	302	28	400	36	9	24	0	17	~	5 6
Diesel, Gas Oil	32	m	44	4	23	8	~	18	4	24	4	18
Otros	29	ស	82	ω	104	0	0	29	0	33	0	36
AGROPECUARIO	10	100	11	100	12	100		100	27	100		0
Diesel, Gas Oil	10	100	11	100	12	100	22	100	27	100	28	100
TOTAL	2,531	100	2,735	100	2,999	100	3,038	100	2,630	100	2,742	100
Fuente: OLADE, COENER.	COENER.		Balances Energé	géticos	•							

^
14
-
_
f 1
_
~
4
_
1
ı
I,
1
4
i
4
1
,
i
4
ti.
4
1 _d
4
a ¹
4

Cuadro No. 10
ESTADOS UNIDOS: INSUMOS ENERGETICOS ANUALES TOTALES POR HECTAREA
IRRIGADA PARA NUEVE SISTEMAS DE RIEGO BASADOS EN REQUERIMIENTOS
NETOS DE RIEGO DE 915 MM Y ELEVACION CERO DE BOMBEO
En Miles de Kilocalorías (o en Galones de Gasoil)

Energía Total Gal Gasoil	53.5	78.8	375.8	343.0	262.9	109.3	340.0	504.4	271.1
æ	492.5	726.0	3,461.3	3,159.3	2,421.3	1,007.1	3,131.5	4,645.8	2,496.5
Energía Mano de Obra	1.25	0.75	1.00	0.25	12.00	6.00	0.25	1.00	0.25
Relación Energía Inst/Bomb	4.65	5.04	0.80	0.64	0.20	0.25	0.45	0.18	1.13
Energía de Bombeo	87.0	120.0	1,925.0	1,925.0	2,010.0	2,010.0	2,160.0	3,922.5	1,170.0
Energía de Instalac *	404.25	605.3	1,535.3	1,234.0	399.3	500.8	971.3	722.3	1,326.3
Sistemas de Irrigación	Superficial sin IRRS **	Superficial con IRRS	Aspersión Conjunto Sólido	Aspersión Permanente	Aspersión Mov Manual	Aspersión Rodado Lateral	Aspersión Pivote Central	Aspersion Móvil	Goteo

un 3% para que incluyera la energía de mantenimiento, excepto para el sistema de aspersión de conjunto sólido, donde se usó un 1%. * La energía de instalación fue aumentada para todos los sistemas en

⁻ Sistema de Recuperación de Escurrimiento de Riego. ** (IRRS) = Irrigation Runoff Recovery Sustem. (SRER)

^{2:} J. C. BATTY [et al]. Energy Inputs to Irrigation. ŗ

Cuadro No. 11
REP. DOM.: CULTIVOS DE ARROZ Y CARGA POTENCIAL DE MOLINOS
1985

Zona	Area Geográfica	на.	Porcent. del Total	Carga Pot. Molinos
Sur	Valle de San Juan	12,000	10.3	360
Este	Costa de El Seybo, Altagracia	2,000	4.3	150
Norte NE	Duarte, MT Sánchez Sánchez	41,000	35.0	1,230
NC	Salcedo, La Vega	20,000	17.1	009
ပ	Sánchez Ramírez	4,000	3.4	120
z	Espaillat, Puerto Plata	3,000	2.6	06
Noroeste	Yaque Valle del Norte	27,000	23.1	810
Dist. Nac	Dist. Nac. Area de Baní	2,000	4.3	150
Totales		117,000	100.0	3,510

Fuente: CDE, Harza. Plan de Electrificación Rural (1986-2006). Volumen I, 1985.

(
•
9
1
1
•
•
1
4
1
•
1
)
1

CUADRO 5.3

DISTRIBUCION PORCENTUAL DE VIVIENDAS PARTICULARES
POR TIPO DE ENERGETICO CONSUMIDO PARA ILUMINACION Y OTROS USOS
EN LA ZONA RURAL. SEGUN NIVEL DE INGRESO Y REGION
1981

			NIVEL DE	INGRESO MI	ENSUAL, RI	D\$	
REGION	Todos	0-150	151-300	301-450	451-600	601 – 1050	1051/Más
TOTAL PAIS	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Con E. E.	29.4	23.6	45.2	59.3	60.9	65.3	86.7
Sin E. E.	70.6	76.4	54.8	40.7	39.1	34.7	13.3
DIST. NACIONAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Con E. E.	73.5	63.7	85.4	94.9	90.9	100.0	100.0
Sin E. E.	26.5	36.3	14.6	5.1	9.1	-	~
R. SURESTE	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Con E. E.	23.7 ✓	18.3	39.4	55.6	56.3	58.3	60.0
Sin E. E.	76.3	81.7	60.6	44.4	43.7	41.7	40.0
R. CIBAO	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Con E. E.	26.1	22.0	37.7	52.5	55.0	60.0	100.0
Sin E. E.	73.9	78.0	62.3	47.5	45.0	40.0	-
R. SUROESTE	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Con E. E.	21.8	18.4	34.9	32.0	35.7	50.0	100.0
Sin E. E.	78.2	81.6	65.1	68.0	64.3	50.0	

EULNII: Oticina Nacional de Estadistica (ONE), Censo Nacional de Población y Vivienda 1001

	1	1
	1	1
		4
	'	
	1	
		į
		1
	1	1
•	•	
	1	

CUADRO 5.6

DISTRIBUCION PORCENTUAL DE VIVIENDAS PARTICULARES

POR TIPO DE ENERGETICO CONSUMIDO PARA COCCION DE ALIMENTOS Y OTROS USOS

EN LA ZONA RURAL, SEGUN NIVEL DE INGRESO Y REGION

1981

			NIVEL DE	INGRESO M			
REGION	Todos	0-150	151-300	301-450	451-600	601 – 1050	1051/M
TOTAL PAIS	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Carbón	26.0 ' ;	25.0	34.0	28.0	27.0	22.0	20.0
Leña	60.0	65.0	48.0	41.0	39.0	35.0	47.0
GLP	8.0	5.0	13.0	25.0	31.0	39.0	33.0
Otros	1.0	_	1.0	1.0	2.0	2.0	•
No cocina	5.0	5.0	4.0	5.0	1.0	2.0	••
DIST. NACIONAL	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Carbón		50.0	46.0	31.0	27.0	11.0	-
Leña	22.0 69	30.0	13.0	5.0	9.0	_	-
GLP	27.0	16.0	35.0	51.0	59.0	89.0	100.0
Otros	1.0	1.0	2.0	-	-	-	-
No cocina	4.0	3.0	4.0	13.0	5.0	-	-
R. SURESTE	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Carbón	34.0	33.0	38.0	40.0	44.0	42.0	20.0
Leña	56.0	58.0	53.0	45.0	50.0	33.0	8.0
GLP	4.0	3.0	7.0	13.0	-	17.0	-
()tros	1.0	_	2.0	2.0	6.0	8.0	-
No cocina	5.0	6.0	-	-	-	-	-
R. CIBAO	100.0	100.0	100.0	100.0	100.0	. 100.0	100.0
Carbón	21.0	20.0	28.0	24.0	25.0	20.0	17.0
Leña	66.0	69.0	53.0	45.0	40.0	40.0	50.0
GLP	7.0	6.0	12.0	24.0	33.0	40.0	33.0
Otros	1.0	_	1.0	1.0	2.0	-	-
No cocina	5.0	5.0	6.0	6.0	-	-	-
R. SUROESTE	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Carbón	18.0	16.0	31.0	16.0	14.0	13.0	100.0
Leña	76.0 j	80.0	60.0	80.0	72.0	62.0	-
GLP	2.0	1.0	2.0	4.0	14.0	13.0	-
Otros	-	-	1.0	-	-	-	-
No cocina	4.0	3.0	6.0	-	-	12.0	-

FUENTE. Oficina Nacional de Estadística (ONE), Censo Nacional de Población y Vivienda, 1981.

		İ
	}	
	•	
	•	
	•	
]	
	•	

PORCENTAJE DE VIVIENDAS QUE DISPONEN DE ARTEFACTOS DOMESTICOS EN EL TOTAL DEL PAÍS, PORCENTAJE DE VIVIENDAS QUE DISPONES Y REGIONES. 1981 CUADRO 5.7

				V	RTE	F A C	C T O	S		Licue	Lava
REGION	Nevera	Estufa	Plancha	Abanico	Radio	T.1'.	tador	Acond.	Stereo	dora	dora
TOTAL PAIS	38.2	31.7	54.0	26.0	52.4	35.0	3.1	2.6	14.8	14.2	6.0
Urbana	52.4	51.8	60.7	43.8	8.99	57.4	9.6	4.7	24.7	23.9	1.5
Rural	11.5	6.6	46.6	6.7	48.4	10.4	0.4	0.3	4.0	3.6	0.2
DIST. NACIONAL	58.3	61.3	63.4	53.4	53.2	59.8	9.9	6.7	29.5	27.3	2.1
Urbana	63.5	67.2	8.99	59.2	55.4	64.8	7.6	7.8	32.4	30.5	2.4
Rural	31.1	29.8	45.7	22.8	41.8	33.1	1.0	1.0	14.9	11.5	4.0
R. SURESTE	22.4	20.3	50.1	15.8	90.6	36.9	1.8	1.2	9.0	8.	6 .4
Urbana	43.8	41.2	63.7	33.3	63.0	68.2	4.0	2.7	18.5	18.3	0.8
Rural	7.8	6.1	40.9	4.1	47.2	8.2	0.3	0.1	2.5	2.3	0.1
R. CIBAO	24.6	23.4	53.6	15.9	58.2	23.4	1.7	1.1	9.8	10.1	4.0
Urbana	47.0	44.9	25.5	32.6	58.7	46.0	3.9	2.4	20.5	21.0	6.0
Rural	10.8	10.2	52.4	9.6	27.9	4.6	0.3	0.3	3.9	3.4	0.1
R. SUROESTE	15.8	6.9	38.7	10.5	33.9	8.6	1.4	0.2	5.5	5.2	0.2
Urbana	27.7	12.9	40.9	19.5	38.0	17.4	3.0	4.0	6.6	10.3	0.2
Rural	7.4	2.6	37.3	4.2	30.9	2.5	2.5	0.1	2.5	1.6	0.1

FUENTE: Oficina Nacional de Estadística (ONE), Censo Nacional de Población y Vivienda.

CUADRO 5.8

CONSUMO DE ENERGIA ELECTRICA DE LAS VIVIENDAS PARTICULARES

PARA ILUMINACION Y OTROS USOS, SEGUN NIVEL DE INGRESO, ZONA Y REGION

1981

(Millones de KWH/año)

			NIVEL DE	INGRESO M	ENSUAL, R	D\$	
REGION	Todos	0-150	151-300	301-450	451-600	601-1050	1051/Más
TOTAL PAIS	738.40	93.10	92.30	63.90	77.10	224.20	187.70
Urbana	702.20	81.10	83.20	59.90	72.30	220.00	185.70
Rural	36.20	12.00	9.10	4.00	4.80	4.20	2.00
DIST. NACIONAL	424.60	37.60	47.00	32.50	44.50	135.60	127.40
Urbana	414.80	35.20	44.30	31:20	42.80	134.40	126.90
Rural	9.80	2.40	2.70	1.30	1.70	1.20	0.50
R. SURESTE	101.20	16.30	14.80	10.70	8.50	25.30	25.60
Urbana	93.60	13.80	12.70	9.80	7.70	24.40	25.20
Rural	7.60	2.50	2.10	0.90	0.80	0.90	0.04
R. CIBAO	177.50	31.00	24.00	16.70	20.30	54.40	31.10
Urbana	162.50	25.30	20.60	15.20	18.40	52.80	30.20
Rural	15.00	5.70	3.40	1.50	1.90	1.60	0.90
R. SUROESTE	35.00	8.20	6.50	4.00	3.80	8.90	3.60
Urbana	31.30	6.80	5.60	3.70	3.40	8.40	3.40
Rural	3.70	1.40	0.90	9.30	0.40	0.50	0.20

FUENTE Comisión Nacional de Política Energética y el Instituto de Estudios de Población y Desarrollo.

CUADRO 5.12

CONSUMO DE ENERGIA DE LAS VIVIENDAS PARTICULARES

PARA LA COCCION DE ALIMENTOS Y OTROS USOS EN LA ZONA RURAL,

SEGUN NIVEL DE INGRESO Y REGION

1981 – 'miles bep)

				NIVEL DE	INGRESO M	ENSUAL, R	D\$		
REGION		Todos	0 - 150	151 – 300	301-450	451-600	601-1050	1051/Más	
TOTAL PA	\IS	1,916.90	1,505.50	286.10	75.00	28.10	17.00	5.20	
Carbon	113	217.50	109.50	78.30	12.70	8.80	6.60	1.60	
Leña	86.8	1,664.70	1.386.40	199.70	56.90	13.60	5.80	2.30	
GLP	1.9	34.70	9.60	8.10	5.40	5.70	4.60	1.30	
DIST. NAC	IONAL	97.10	49.50	31.40	5.90	6.60	2.90	0.80	
Carbón		71.30	38.10	26.50	3.30	2.80	0.60	_	
Leña		10.90	9.00	1.50	0.20	0.20	_	_	
GLP		14.90	2.40	3.40	2.40	3.60	2.30	0.80	
R. SUREST	E	746.90	597.40	113.80	24.70	5.70	3.60	1.70	
Carbón		84.40	37.30	37.20	5.30	2.20	2.00	0.40	
Leña		658.80	558.50	75.40	. 18.70	3.50	1.40	1.30	
GLP		3.70	1.60	1.20	0.70	-	0.20	-	
R. CIBAO		679.40	533.60	90.70	32.40	12.00	8.30	2.40	
Carbón		46.90	25.20	10.60	3.40	3.10	3.70	0.90	
Leña		617.50	503.1 0	76.80	26.80	7.10	2.70	1.00	
GLP		15.00	5.30	3.30	2.20	1.80	1.90	0.50	
R. SUROES	TE	393.50	325.00	50.20	12.00	3.80	2.20	0.30	
Carbón		14.90	8.90	4.00	0.70	0.70	0.30	0.30	
Leña		377.50	315.80	46.00	11.20	2.80	1.70	_	
GLP		1.10	0.30	0.20	0.10	0.30	0.20	_	

FUENTE: Comisión Nacional de Política Energética y el Instituto de Estudios de Población y Desarrollo.

CUADRO 5.13

COCCION DE ALIMENTOS Y OTROS USOS, PARA EL TOTAL DEL PAIS Y NIVEL DE INGRESO CONSUMO DOMESTICO PER CAPITA DE ENEKGIA FINAL Y UTIL PARA ILUMINACION, (Galones equivalentes de petróleo/año)

	70.	TOTAL	MENOS DE 150	DE 150	151-300	00	301-450	150	451-600	009	601-1050	050	1051/Más	Más
CONCEPTOS	Final Util	Unil	Final	Util	Final	Unil	Final	Util	Final	Util	Final	Unil	Final	Unil
TOTAL PAIS	27.14	27.14 10.14	25.55)	5.71	22.67	8.45	25.69	12.46	32.21	16.99	51.66	36.39	68.74)	50.83
lluminación y otros usos	4.10	3.55	1.61	0.88	2.51	2.16	4.27	4.10	8.27	8.09	28.14	28.03	4.14	41.43
Electricidad	5.62	5.62	1:43	1.49	2.72	2.72	4.53	4.53	8.77	8.77	29.34	29.34	41.78	41.78
Kerosene	1.75	0.35	1.71	0.34	1.83	0.37	2.35	0.47	2.68	0.54	2.96	0.59	2.00	0.40
Cocción alimentos y otros usos	23.04	6:9	23.94	4.83	20.16	6.29	21.42	8.36	23.94	8.90		8.36		9.40
Carbón	19.74	5.79	17.64	5.28	24.78	7.43	25.20	7.56	21.84	6.55	19.32	5.80	21.84	6.55
Leña	39.48	\sim	39.48	5.92	38.22	5.63	54.60	8.19	28.56	4.28		3.65		3.65
d15	13.44	8.06	5.46	3.28	99.6	5.80	15.54	9.32	26.46	15.88		15.62	-	17.89

FUENTE: Comisión Nacional de Política Energética y el Instituto de Estudios de Población y Desarrollo en base a la Encuesta del Banco Central, 1976-77.

		ĺ

CUADRO 5.14

CONSUMO DOMESTICO PER CAPITA DE ENERGIA FINAL PARA ILUMINACION, COCCION DE ALIMENTOS Y OTROS USOS. **SEGUN TOTAL DEL PAIS, REGION Y ZONA. 1981** (galones equiv. de petróleo)

CONCEPTO	Total País	Dist. Nacional	R. Sureste	R. Cibao	R. Suroeste
TOTAL PAIS	27.14	2.83	37.37	22.74	36.25
Iluminación y otros usos	4.10	6.89	3.07	3.07	2.51
Coccion alimentos y otros usos	23.04	14.94	34.30	19.67	33.74
ZONA URBANA	23.10	22.73	25.25	22.30	23.74
Iluminación y otros usos	6.35	7.96	5.36	5.24	3.45
Cocción alimentos y otros usos	16.75	72.5% 14.77	19.89	17.06	20.23
ZONA RURAL	31.54	17.41	54.58	23.00	45.01
Iluminación y otros usos	1.65	5.2% 1.24	1.52	1.73	1.86
Cocción alimentos y otros usos	29.89 🗸	94.8% 15.87	44.06	21.27	43.15

FUENTE: Comisión Nacional de Política Energética y el Instituto de Estudios de Población y Desarrollo.

Cuadro No. 19
REPUBLICA DOMINICANA: COMPARACION DE LAS ESTIMACIONES DEL INFORME COENER-EDI (En Miles de TEP)

Año	Fuente	Bagazo	Leña	Total	Carbón Vegetal	SG+Comer + Hog Urb	SG+Comer Hog Rur + Hog Urb Agric	Total
1977	Bal Ener	715.0	715.0 1,077.0 3,458.0	3,458.0			87.0	2,735.0
1978	İ		692.5 1,099.7 3,919.7	7.616,2 3,919.7	379.1			537.4 2,811.6
1990	1990 EDI *		622.3 925.2 5,512.5 263.2	925.2 5,512.5	263.2	629.5		576.2 3,616.3
	(Bal Ener				77.0		1,176.0	2,690.0
2000	EDI *	592.8	 	862.9 7,295.0	246.5	913.6	 	539.5 4,626.0

* = Proyectiones 1990, 2000. SG= Sector Gubernamental. Fuente: COENER, EDI. Estrategias Energéticas para la República Dominicana. 1980. COENER. Balances Energéticos.

Cuadro No. 20
REP. DOM.: PROYECCIONES DE DEMANDA ENERGETICA PARA LOS HOGARES RURALES. 1978 (Real), 1990 y 2000 (Proyecciones del Caso Base) (En Miles de Barriles Equivalentes de Petróleo)

Uso Final	Años	Madera	Carbón V	Carbón Veg Kerosene	Electric
Cocción de 1978 alimentos 1990 2000	1978 1990 2000	3,186 3,186 2,860	507 752 801	1 1 1	1 1 1
Iluminac y	1978		1		15
electrodom 1990	į	,	1	76	38
		3,186	507	79	15
	2000	2,860	801	62	38

Fuente: COENER, EDI. Estrategias Energéticas para la República Dominicana. 1980.

_	
	1
	1
	1
_	
•	

Cuadro No. 21
REP. DOM.: PROYECCIONES DE LA DEMANDA DE ENERGIA PARA LA AGRICULTURA 1978 [Real], 1990 y 2000 [Proyecciones]
(En Miles de Barriles Equivalentes de Petróleo)

Cultivos	Compust		cto		ilizant	
	1978	1990	2000	1978	1990	2000
Azúcar	68.2	81.1	92.5	390.2	463.9	529.3
Tabaco	1.7	2.4	3.1	4.2	5.8	7.7
Arroz	9.1	17.3	24.1	82.9	157.3	219.7
Cacao	0.0	0.0	0.0	0.5	8.0	1.0
Tomates	1.1	1.2	1.3	12.5	14.0	15.0
Café	0.0	0.0	0.0	3.3	5.4	5.9
Yuca	1.1	1.2	1.2	0.5	9.0	9.0
Maíz	1.1	1.5	1.8	1.4	1.9	2.4
Papas	0.5	0.5	0.5	2.3	2.3	2.3
Habichuelas	1.6	2.5	3.2	3.5	5.4	7.0
Otros y	r	t		u C	u c	,
Ganager 1a	2.0	٥٠,	٥٠/	32.5	32.5	43.2
Total	89.8	113.1	135.0	533.8	689.9	834.1

Fuente: COENER, EDI. Estrategias Energéticas para la República Dominicana. 1980.

Cuadro No. 22

PLAN	PARA	EL MEJ	ORAMIE	NTO Y	LA EX	XPANSION	DEL	SISTEMA	DE
ELECTRIFIC	CACION	RURAL	DE LA	REPUI	BLICA	DOMINICA	NA (1986-199)1)

Condiciones en el año 1983:

*	Porcentaje	de	la	población	rural	con	servicio	de	energía
e]	léctrica:								29%

- * Carga del sistema de electrificación rural: 74 MW

 Objetivos para cinco años, 1991:
- * Porcentaje de la población rural con servicio de energía eléctrica:
- * Porcentaje de la población rural a electrificarse a partir de la rehabilitación y la expansión del sistema existente:9%
- * Porcentaje de la población rural a electrificarse a partir de la construcción de sistemas nuevos:

 27%
- * Total del porcentaje de la población rural electrificada para el año 1991: 65%
- *Carga total de los sistemas de electrificación rural:175 MW

Cuadro No. 23
REP. DOM.: ESTRUCTURA DE LOS PRECIOS DE LOS COMBUSTIBLES
En RD\$/Galón*
1991

TIPO DE COMBUST	PRECIO REFIDOMSA	DIFERENCIAL	REFIN/ DISTRIB	DISTRIB/ DETALL	DETALL/ CONSUM
Avtur	9.91	3.37	13.28		
Fuel oil A/C	3.93	2.15	6.08		
Gasoil	8.93	2.71	11.64	12.22	13.70
Gasolina	8.34	8.76	17.10	17.95	20.00
Kerosene	9.26	6.10	15.36		18.00
Fuel oil (CDE)	4.06	00.0	4.06		
Gasoil (CDE)	8.98	00.0	8.98		
GLP (Domést.)	8.19	-6.13	2.06		
GLP (Indust.)	8.19	00.0	8.19		
Nota:					

* Para los precios de REFIDOMSA se utilizaron cifras de octubre de 1991.

Fuentes: REFIDOMSA.

Secretaría de Estado de Industria y Comercio.

INDICE DE GRAFICOS

1. República Dominicana: Energía Primaria. 1973, 1977, 1980 y 1985-1991. (En Miles de TEP).

[Presentación por: Producción, Importación y Total].

2. República Dominicana: Energía Primaria. 1973, 1977, 1980 y 1985-1991. (En Miles de TEP).

[Presentación por tipo de energético: Carbón M., Petróleo, Leña, Combustibles Veg. y Anim. e Hidroenergía].

3. República Dominicana: Energía Secundaria. 1973, 1977, 1980 y 1985-1991. (En Miles de TEP).

[Presentación por: Producción, Importación y Total].

4. República Dominicana: Energía Secundaria. 1973, 1977, 1980 y 1985-1991. (En Miles de TEP).

[Presentación por tipo de energético: Gasolina, Combustibles Pesados, Carbón Vegetal, Diesel y Otros].

4-A. República Dominicana: Demanda de Petróleo. 1978, 1980, 1985, 1990 y 2000. (En Miles de BEP).

[Presentación de: Caso Base, Caso de No Acción y Consumo efectivo].

- 5. República Dominicana: Producción de Leña, Combustibles Vegetales y Animales y Oferta Total de Energía Primaria. 1980 y 1985-1991. (En Miles de TEP).
- 6. República Dominicana: Producción de Carbón, Importación de Energía Secundaria y Oferta Interna y Total de Energía Secundaria. 1980 y 1985-1991. (En Miles de TEP).
- 7. República Dominicana: Consumo Final por Sectores. 1973, 1977, 1980, 1989, 1990 y 1991 (En Miles de TEP).

[Presentación por sector: Residencial, Comercial y Público; Transporte; Industrial y Minero y Agropecuario.]

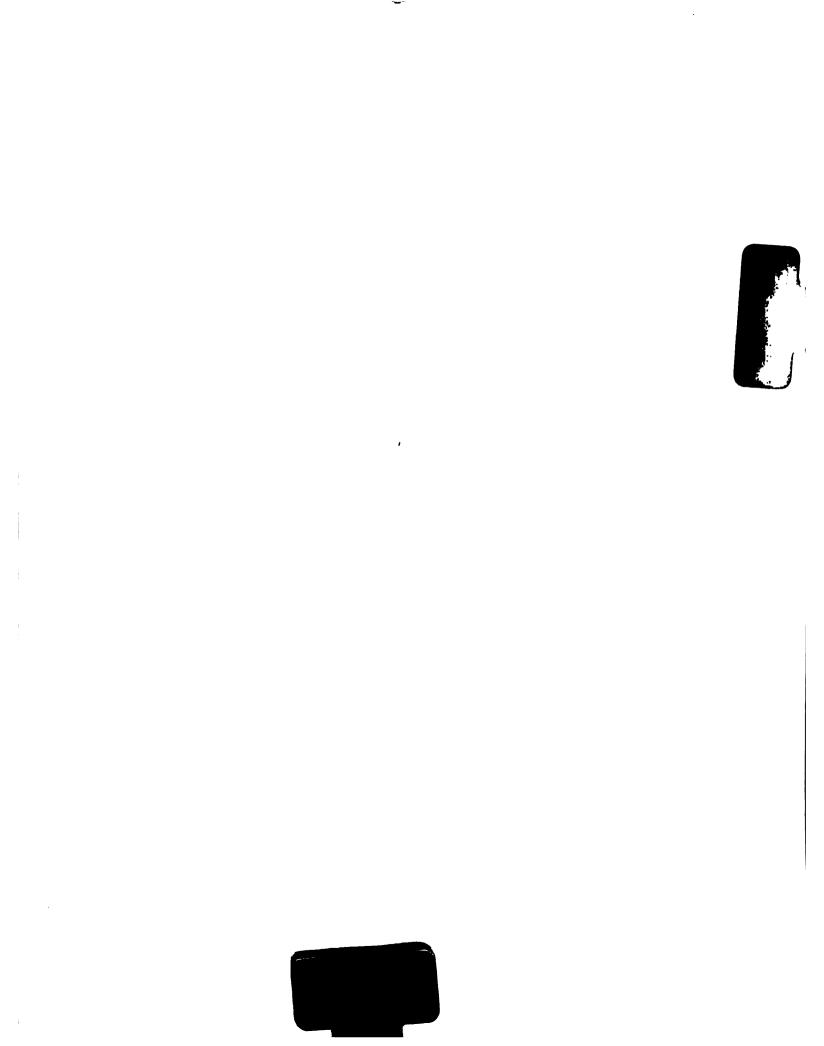
8. República Dominicana, Consumo Final Total de Energía y Consumo Final de Energía en el Sector Agropecuario. 1980 y 1985-1991. (En Miles de Barriles).

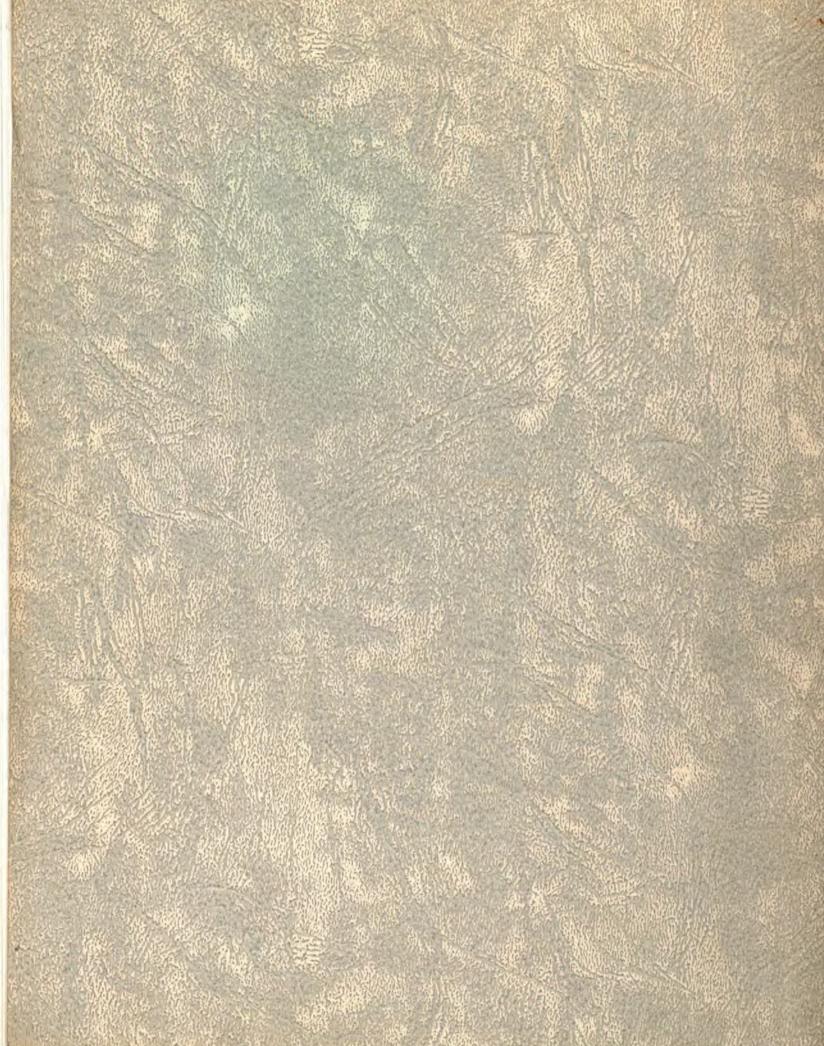
9. República Dominicana: Consumo del Sector Residencial, Comercial y Público por Tipo de Energéticos. 1973, 1977, 1980 y 1989-1991. (En Miles de TEP).

[Presentación por tipo de energético: Leña, Carbón Vegetal, Gas Licuado y Otros.]

10. República Dominicana: Consumo del Sector Industrial y Minero por Tipo de Energéticos. 1973, 1977, 1980 y 1989-1991. (En Miles de TEP).

[Presentación por tipo de energético: Otros Combustibles Vegetales y Animales, Combustibles Pesados, Diesel y Otros].


11. República Dominicana: Consumo del Sector Transporte por Tipo de Energéticos. 1973, 1977, 1980 y 1989-1991. (En Miles de TEP).


[Presentación por tipo de energético: Gasolina, Diesel y Combustibles Pesados.]

12. República Dominicana: Consumo del Sector Agropecuario por Tipo de Energéticos. 1973, 1977, 1980 y 1989-1991. (En Miles de TEP).

[Presentación por tipo de energético: Diesel.]

F	ECHA DE	DEVOLUCI	ON			
	, i	CA 382		rural		
	Autor	rnergia	en el medio	solicitante		
	Ti	Fecha Devolución	Nomi	//	/	4
		/	1	//	//	
		/	1		1	
			1	1		
			1	7		
			1			/
					3	
				-3		

