
INSTITUT INTERAMÉRICAIN DE COOPERATION POUR L'AGRICULTURE

カケケケケケカカニンクサヤヤヤヤヤ MARNDR ******** FAMV IICA PREMIER **COURS NATIONAL** POST-GRADUE SUR L'IRRIGATION, LE DRAINAGE ET LA GESTION DES RESSOURCES HYDRIQUES 15 Juillet - 30 Septembre 1955 Port-au-Prince, Haiti ****

1 1 AGO 1987

HYDRAULIQUE

SOUTERRAINE

PAR

Gérald JEAN BAPTISTE, Ing. Lionel RABEL, Ing.

REVISION ET EDITION: HUMBERTO PIZARRO Spécialiste en Irrigation et Drainage IICA - HAITI

PREMIER COURS NATIONAL POST-GRADUE SUR L'IRRIGATION: LE DRAINAGE ET LA CESTION DES RESSOURCES HYDRIQUES

COORDINATION:

INSTITUT INTERAMERICAIN DE COOPERATION POUR L'AGRICULTURE (IICA) FACULTE D'ACRONOMIE ET MEDECINE VETERINAIRE (FAMV)

SOUTIEN FINANCIER:

AGENCE DE DEVELOPPEMENT INTERNATIONAL (USAID) ACENCE CANADIENNE POUR LE DEVELOPPEMENT INTERNATIONAL (ACDI) INSTITUT INTERAMERICAIN DE COOPERATION POUR L'ACRICULTURE (IICA) MINISTERE DE L'AGRICULTURE, DES RESSOURCES NATURELLES ET DEVELOPPEMENT RURAL (MARNOR) FACULTE D'AGRONOMIE ET NEDECINE VETERINAIRE (FAMV)

TEXTE:

HYDRAULIQUE...SOUTERRAINE

DACTYLOGRAPHIE JACQUELINE CHAPRON

DESSINS

JEAN ROBERT MOREL

IMPRESSION : ALCE SARDE

Misc. Publ.

596-ISSN=0534-5391

.

.

HYDRAULIQUE SOCIETRAINE

TABLE DES MATIERES

		PAGE
	TABLE DE MATIÊRE	
	LISTE DES FIGURES	vii
	LISTE DES TABLEAUX	ix
	PREMIERE PARTIE	
	HYDRAULIQUE SOUTERRAINE - HYDROGEOLOGIE	1
1.1	Généralités	1
1.2	Systèmes hydrologiques	1
1.2.3	Identification spaciale des Systèmes hydrologiques	2
1.2.4	Identification temporelle. Période et fréquence des	
	données	3
1.3	Alimentation du bassin hydrologic a - Précipitation	
	efficace efficace	4
1.3.1	Evaporation potentielle	4
1.3.2	Evaporation recilie	5
1.4	Alimentation du lessis lignade, imp - Iniliantion	5
1.5	Alimentation de l'aquidore (1) tration eff. Jace	6
1.6	Débits des écollements des systèmes hydrologiques	6
1.7	Bilan d'eau	7
1.8	Conclusions	8
•	DEUXIEME PARTIE	17
	IDENTIFICATION DE L'AQUIFERE	17
2.1	Identification Céclogique	17
2.1.1	Formations - Lithostratigraphiques et hydrogéologiques	18
2.1.1	Identification des formations lithostratigraphiques	18
2.1.1.2	Identification des formations hydrogéologiques et des	
	aquifères	•
	Formation hydrogéologiques perméables, gisements d'eau	
	souterraine	

2.1	La de la destacación de la contraction de la con	$\overline{\chi}$:
2.1.1	Furnacional - Commission of the commission of the second sufficiency	∂L
2.1.1	ampile epideotec ulf con common action wirelitited I	ŝí
2.1.1.2	laentifulation assituation is well wishest unsite dis	
	કવા ં જેવા ક	
	Formation mythogold gidnes of the filter, all many of the	
	on carminos	

.

		PAGE
	Origine des aquifères	-20
	Formation hydrogéologique imperméable imposant les limites	
	géologiques des aquifères	20
	Formation hydrogéologiques Semi-imperméable à l'origine	
	de l'aquifère multicouche	:01
	Conclusions Bassin Hydrogéologique	21
2.1.2	Extension géographiques des aquifères. Zones hydro-	
	géologiques	23
•	Détermination du volume utile du réservoir	23
2.1.3	Conclusions	24
2.1.4	Cas concrètes d'identification géologiques des	
	aquifères de la plaine du Cul de Sac.	25
2.2	Identification hydrodynamique de l'aquifère	26
2.2.1	Concept d'aquifère	27
2.2.2	Configuration de l'aquifère types hydrodynamiques	28
2.2.2.1	Aquifère à nappe libre. Surface piézométrique	29
2.2.2.2	Aquifère à nappe captive	29
2.2.2.3	Aquifère à nappe semi-captive ou à drainance	-30
2.2.2.4	Nature du substratum de l'aquifère	30
2.2.3	Fonction de l'aquifère - Aquifère multicouche	91
2.2.3.1	Aquifère, complexe unique réservoir/eau souterraine	31
2.2.3.2	Aquifère multicouche	32
2.2.4	Fonctions de réservoir	32
2.2.5	Comportement de l'aquifère	33
2.2.5.1	Comportement hydrodynamique de l'aquifère	34
	Comportement hydrochimique de l'aquifère	35
	TROISTEME PARTIE	
	AQUIFERE CONDUITE D'EAU SOUTERRAINE	.46
3.1	Loi de Darcy	46
3.1.1	Expérience de H. Darcy	46
3.2	Application de la loi de Darcy sur le terrain	48
	Mesure du niveau piézométrique	48

83 83	in the second of
24 A	San Marian Carana Barana Anna Anna Anna Anna Anna Anna Anna
	3. 1. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
19	profit part (1995年) (1995年) (1995年) (本文) というprofit (1995年) (1995年) (1995年) (1995年) (1995年)

			PAGE
	3.2.2	Calcul du gradient hydraulique	* 48
	3.3.	Paramètres hydrodynamiques	49
	3.3.1	Perméabilité au conductivité hydraulique	49
	3.3.2	Coefficient de perméabilité au conductivité hydraulique de	
		Darcy	49
	3.3.3	Perméabilité Intrinsèque	50
	3.3.4	Transmissivité	50
	3.3.5	Diffusivité	50
	3.4	Débit d'une nappe et vitesse d'écoulement	51
	3.4.1	Débit d'une nappe	51
	3.4.2	Vitesse d'écoulement	51
	3.4.2.1	Vitesse de filtration et vitesse effective	51
	3.4.2.2	Vitesse de déplacement hydrocenematique souterraine -	
		Dispersion	53
3	.4.2.2.1	Mise en évidence de la dispersion Tragage	53
3	4.2.2.2	La dispersion	53
	3.5	Détermination de la vitesse de déplacement sur le terrain	54
	3.5.1	Porosité cinématique	54
	-	QUATRIEME PARTIE	
		ESSAI DE PUITS ET POMPAGES D'ESSAIS	57
	4.1	Equipement technique des puits et sondages	57
	4.2	Définitions et concepts de base	58
	4.2.1	Effets du pompage sur l'aquifère, Cône de dépression	59
	4:2.2	Géométrie du Cône de dépression - Rabattement et rayon	
		d'influence	59
	4.2.3	Facteurs de la Géométrie du Cône de dépression	60
		Rôle de la transmissivité et du Coefficient d'enmagisinement	60
		Rôle du temps de pompage	60
	4.2.4	Méthode d'expérimentation par pompage	61
	4.3	Essai de puits par paliers de débit de courtes durées	62
	4.3.1	Conditions de base	62
	4.3.2	Exécution de l'essai de puits - Paliers de débit	63
	4.3.3	Signification du rabattement dans les ouvrages -	
		Pertes de charge	64

and the second section of the second section is a second section of the second section in the second section is

the contract of an experience of the property of the contract the context of the light heart and all with the body and all the context of the c in the design of the control of the 4 a grown god or and god garage trade, at the affect of 11.5 2 and the second of the second o . $= (m,\alpha_{i+1},\ldots,\alpha_{i+1},\alpha_{i+1},\ldots,\alpha_{i+1}) + (m,\alpha_{i+1},\ldots,\alpha_{i+1},\alpha_{i+1},\ldots,\alpha_{i+1},\alpha_{i+1},\alpha_{i+1},\ldots,\alpha_{i+1},\alpha_{i+1},\alpha_{i+1},\ldots,\alpha_{i+1})$ 5.5. With Co.

		PAGE
4.3.4	Vitesse critique et débit critique dans l'aquifère à nappe	/E
6 3 5	libre	65
4.3.5	Interprétation graphique des données de l'essai de puits	66
	Relation, débits/temps et rabattements/temps	66
•	Courbe débits/rabattements - Débit critique	66
4.3.6	Calcul des pertes de charge	67
4.3.7	Détermination de la productivité d'un puits. Débit d'ex-	
	ploitation maximum	68
4.4	Pompage d'essai de longue durée	69
4.4.1	But du pompage d'essai	69
4.4.2	Expressions d'hydrodynamiques souterraines du régime tran-	
	sitoire	70
4.4.3	Interprétation graphique des pompages d'essai	71
4.4.3.1	Relations entre le rabattement et les temps	71
4.4.3.2	Calcul des paramètres hydrodynamiques	72
	Interpétation des données du pompage d'essai	75
	Pompage d'essai réalisé dans l'aquifère de la plaine du	
•	Cul de Sac	77
	CINQUIEME PARTIE	
	LES CARTES PIEZOMETRIQUES	96
5.1	Nivea piézométrique	96
5.1.	Nappes libres	96
5.1.2	Nappes captives	97
5.2	Surface piézométrique	97
5.3	Etablissement des cartes en courbes isopièzes	98
5.4	Calcul de la profondeur de la surface piézométrique	99
5.5	Tracé des lignes de courant et détermination de la direc-	
	tion de l'écoulement	99
5.5.1	Méthode élémentaire de détermination	100
5.6	Calcul du gradient hydraulique	100
5 .7	Détermination du type de nappe	101
5.7.1	Les nappes libres	101

å∀.	. 1910.	s also	
ନ୍ଦ୍	mainto si si masi si r	ic can repair of capital saidsolfs.	ţ.
	south at he wattout compo-	preside an magh spàisbaid	ζ. ζ
¢φ	·	2 (m/s) 1 (5) 11 (5) 14 (
GCI	pro esta	er with a control with the 4% of	1 83
(91		AN OLD START THE DESCRIPTION OF FREE START	5.0
1, (enter in a section of the floriday of	(, (
1		onadia pukeno esti	

		PAGE
5.7.2	Nappes captives	102
5.8	Structure élémentaire de la surface piézométrique	102
5.8.1	Nappes régulières	102
5.8.1.1	Forme et groupement des courbes isopièzes.	103
5.8.1.2	Courbures des courbes isopièzes	103
5.8.1.3	Espacement des courbes isopièzes	104
5.8.2	Nappes alluviales	104
5.8.2.1	Drainage de la nappe alluviale par le cours d'eau .	104
5.8.2.2	Alimentation de la nappe alluviale par le cours d'eau	104
5.8.2.3	Relations mixtes	105
5.8.3	Courbes fermées	105
5.8.4	Seuils hydrauliques	105
5.9	Analyse des fluctuations de la surface piézométriques	105
	EVALUATION DES RESSOURCES EN EAU SOUTERRAINE - REGIONALES	107
1	Définition des ressources en eau souterraine	107
2	Evaluation des ressources	111
3	Méthodologie	112
•	Première phase: analyse des systèmes aquifères	112
	Deuxième phase: modélisation des systèmes aquifères et	
	simulation de plans et scénarios d'exploitation	116
	Troisième phase Evaluation des ressources potentielles et	
	exploitables	119
4	Conclusions	120
	SIXIEME PARTIE	136
	POLLUTION DE L'EAU SOUTERRAINE	136
6.1	.Généralités	137
6.1.1	Dose de polluant et fréquence des apports	139
6.2	Principaux types de polluants, toxicité	139
6.2.1	Polluants physiques	140
	Polluants chimiques	140
	Sels minéraux dessous	140
6.2.2.2	Micropolluants: métaux lourds, pesticides et détergents	141

	, M
C + L	
<i>:</i> ::	-8 * _{0.0} < 2.000 = 0.00
$\mathcal{L}_{\mathcal{L}}}}}}}}}}$	where displace is the result of the second of the second
$\mathbb{C} \subseteq \mathbb{C}$	particles of the same section will be a fine of the same section o
Ses E	and the second of the second o
	on the state of th
· 24	a and the second of the second
2	group of the Shift of Association are also be employed.

		PAGE
6.2.2.3	Hydrocarbures	142
6.2.2.4	Polluants organiques. Microorganismes	142
6.3	Principales sources de pollution. Foyers de pollution	142
6.3.1	Pollution d'origine domestique et urbaine	142
6.3.2	Pollution d'origine agricole	143
6.3.3	Pollution d'origine industrielle	143
6.4	Mécanisme et facteurs de la pollution de l'eau souterraine	143
	Introduction du polluant dans le sol	143
6.5	Vulnérable des nappes à la pollution	144
6.5.1	Facteurs de la vulnérabilité	144
6.5.2	Cartes de la vulnérabilité	145
6.6	Lutte contre la pollution de l'eau souterraine	145

		i		

LISTE DES FIGURES

FIGURE		PACE
I - 1	Schéma d'identification du système aquifère	13
I - 2	Trois domaines d'espaces identifiant trois systèmes	
	hydrologiques	14
I - 3	Le domaine du bassin hydrologique délimité par le bassin	
	versant d'un cours d'eau	15
I - 4	Evaporation - évapotranspiration potentielle et réelle	16
II- 1	Trois grandes catégories de formations hydrogéologiques	36
II- 2	Schéma d'identification du système aquifère	37
II- 3	Schéma de l'aquifère à nappe libre	38
II- 4	Schéma de l'aquifère à nappe captive	39
II- 5	Types hydrodynamiques d'aquifères dans un bassin hydrogéo-	
	logique	40
II- 6	Pression dans l'aquifère à nappe captive	41
II- 7	Drainance et aquifère multicouche	42
II- 8	L'aquifère est un complexe physico-chimique unique	43
II- 9	Bilan de l'aquifère	44
II-J0	L'aquifère séquence de l'écoulement de l'eau dans le bassin	
	hydrogéologique	45
III- 1	Expérience de Darcy. Schéma du dispositif expérimental	55
III- 2	Application de la loi de Darcy sur le terrain	56
III- 3	Calcul du gradient hydraulique par la carte piézométrique	56
·Iv- 1	Complexe aquifère ouvrage de captage	85
IV- 2	Effet du pompage dans un aquifère à nappe libre	86
IV- 3	Effet du pompage dans un aquifère à nappe captive	87
	Essai de puits par pompage à paliers de débits	88
	Schéma de l'évolution du cône de dépression	89
	Courbe débits - rabattements ou courbe caractéristique	90
	La courbe caractéristique du puits	91
IV- 8	The state of the s	91
IV -9	Exécution du pompage d'essai et interprétation des données	92

76	Same State & Same	•	• •	
82	asticled no early to			4-16
20	6. i a. 9m/ ³⁴ 6-55	Spring on the contracts	the section	\$ V+ 3
$\langle \phi^{\alpha} \rangle$	control on a control of the control of	e remainable	totolo ol col	0 mg T
1.7			พ.ศ. ยกเมความ	
; ;	ខមណ្ឌ ដីដីដែលចំណ	- Succession Caracter (18)	Stable Samon	è - 24
ŞC	e emmedia a sandari broggio kata da			

viii

FI	GUF	RE .		PAGE
IV	_	10	Pompage d'essai dans l'aquifère à nappe captive	93
IV	_	11	Pompage d'essai	94
I۷	-	12	Pompage d'essai	95
٧	-	1	Niveau piézométrique d'une nappe libre	129
٧	-	2	Niveau piézométrique d'une nappe captive	129
٧	-	3	Carte en courbes isopièzes	130
٧	-	4	Détermination des lignes de courant et du gradient	1
			hydraulique	131
A.	-	5	Interpétation des courbes isopièzes	132
V	-	6	Courbes isopièzes de nappes à filets convergents et	
			divergents	133
V	-	7	Courbure des courbes isopièzes	133
V	-	8	Relation entre la mappe alluviale et la rivière	134
٧	-	9	Relation entre la mappe alluviale et la rivière	135
٧	-	10	Vallée plate. Apparition de marécages	135
۷I	_	1	Origine, transport et évolution des polluants	147

LISTE DES TABLEAUX

TA	BLE	AU	•	PAGE
I	-	1	Capacités des grands réservoirs d'eau à la surface de la	
			terre. D'après les travaux Soviétiques (UNESCO 1978)	9
I	-	2	Volumes d'eau stockés dans le réservoir souterrain des	
			grands continents. D'après les travaux Soviétiques (UNESCO)
			1978)	, 10
I	-	3	Ecoulement naturel moyen et écoulement souterrain dans	
•			les grands continents. D'après les travaux Soviétiques	
			(UNESCO 1978)	10
I	-	4	Composantes des bilans. Données moyennes exprimées en	
			termes de débits. Pour la clarté du texte les dénomina-	
			tions ont été abrégées.	11
I	-	5	Bilan moyen annuel des grands domaines du cycle de l'eau	
			continents, océeans et globe	12
IV	-	1	Essai de puits par paliers de débit de courtes durées	64
IV	-	2	Pompage d'essai à Ivry-sur-Seine (Descente)	73
IV	-	3	Pompage d'essai à Ivry-sur-Seine (remontée)	74
۷.	-	1	Composantes hydrogéologiques et paramètriques de l'écou-	
			lement de l'eau souterrain	122
V	-	2	Limites des systèmes aquifères naturelles et artificielles	124
V :	-	3	Types de systèmes aquifères du point de vue des conditions	
			de leur gestion technique	125
Ŋ	-	4	Utilité des données hydrogéologiques	127
VI	-	1	Normes de l'Organisation Mondiale de la Santé sur la	
			potabilité de l'eau	138

PREMIERE PARTIE

HYDRAULIQUE SOUTERRAINE - HYDROGEOLOGIE

1.1 Généralités

Pour étudier les eaux souterraines il faut tenir compte des conditions géologiques les concernant. C'est pourque on utilise généralement le terme hydrogéologie à hydrologie souterraine.

L'hydrogéologie est donc la science de l'eau souterraine. Elle s'attache plus particulièrement aux problèmes géologiques concernant les eaux souterraines. C'est une discipline des sciences de la terre orientée vers les applications. Elle est aussi une science pluridisciplinaire qui fait appel à différentes techniques relevant des sciences exactes comme les méthodes et moyens de la prospection géophysique, les techniciens de-forage et de captage, la géochimie des roches et des eaux, la météorologie, l'hydrodynamique souterraine, la statistique et l'emploi des ordinateurs au traitement des données et aux modèles mathématiques.

L'hydrodynamique souterraine est l'ensemble des aspects quantitatifs de l'hydrogéologie. C'est la partie de l'hydrodynamique (ou de l'hydraulique) relative à l'écoulement de l'eau souterraine, aux lois qui le régissent et à leurs applications.

1.2 Systèmes Hydrologiques

Le cycle de l'eau est planétaire et perpétuel. Pour l'exécution des études hydrogéologiques, il est nécessaire de le fractionner, conven-

our little from the first of the state of th

tionnellement, en domaines d'espace et en durées accessibles aux observations, expérimentations et mesures, donc en systèmes hydrologiques. L'étude du cycle de l'eau situe les systèmes hydrologiques dans leur environnement et permet d'analyser leur comportement hydrodynamique.

Un système hydrologique est un système dynamique, séquence d'espace et de temps, fraction du cycle de l'eau. Il est identifié par des caractéristiques spatiales et temporelles: (fig I - 1)

1.2.1 L'identification spatiale d'un système repose sur quatre (04) concepts:

- domaine d'espace physique, fini à trois (03) dimensions dont toutes les parties sont en liaisons hydrodynamiques.
- siège de processus interne, hydrodynamique, hydrochimiques ou hydrobiologiques
- séquence du cycle de l'eau, c'est-à-dire comportant une entrée (impulsion), un circuit interne (transfert) et une sortie (réponse). Les limites recevant ou pouvant recevoir des impulsions et émettant des réponses
- variabilité des données dans l'espace selon des lois de distributions statistiques.

L'identification temporelle des caractéristiques du système est la référence à une donnée ou à une durée moyenne déterminée.

1.2.2 Modèle conceptuel du système hydrologique.

L'étude de ces caractéristiques aboutit à la présentation "par l'hydrogéologue d'un modèle conceptuel (schéma conceptuel), base pour l'hydraulicien de l'établissement de modèles mathématiques de simulation des comportements du système consideré.

1.2.3 Identification Spatiale des Systèmes hydrologiques

Trois domaines d'espace interdependants, emboités, peuvent être

cirsonscrits. Ils identifient trois systèmes hydrologiques dans l'ordre de grandeur décroissant (fig I-2)

- le bassin hydrologique
- le bassin hydrogéologique ou des eaux souterraines
- L'aquifère avec sa nappe d'eau souterraine.

Le bassin hydrologique est circonscrit par les lignes de crêtes topographiques, délimitant le bassin versant d'un cours d'eau et de ses affluents. (figI - 2 et fig I - 3)

Il correspond donc, en surface au bassin hydrographique. Il est admis que ses limites se superposent, au mieux, à celles du bassin hydrogéologique. Ces conditions sont en général réalisées pour les grandes unités, de l'ordre de quelques centaines de milliers de km²

Le bassin hydrogéologique est la fraction de l'espace du bassin hydrologique situé sous la surface du sol. (fig I-2 et fig I - 3). C'est le domaine des eaux souterraines. En général, il correspond à un bassin sédimentaire. Ses limites sont imposées par la structure hydrogéologique. (Tableau I-1)

L'aquifère, identifié par la géologie, est l'unité de domaine d'étude des eaux souterraines. Le bassin hydrogéologique est constitué d'un ou de plusieurs aquifères

1.2.4 Identification temporelle. Période et fréquences des données.

Toutes les données relatives à un système considéré doivent être rapportées, selon le but poursuivi à une date donnée ou à une durée moyenne déterminée (unique).

Le traitement des données doit répondre à deux conditions impératives:

- période hydrologique la plus longue possible, choisie en rapport avec la durée de l'historique des mesures avec dix années au minimum:
- fréquence la plus courte possible compatible avec celle des mesures: journalière, hebdomadaire, mensuelle ou annuelle.

Ces deux conditions sont satisfaites par l'acquisition de series chronologiques continues, obtenues par des appareils enregistreurs: pluvio•

graphes (précipitations), thermographes (températures), limnigraphes (niveau d'eau des cours d'eau ou hydrométrie, mesures des niveaux des nappes ou piézométrie). Les enregistrements sont alors respectivement des pluviogrammes, des thermogrammes, des limnigrammes hydrométriques ou piézométriques.

Année hydrologique et année hydrologique moyenne

Les variations des composantes hydrologiques au cours d'une année calendaire ne correspondent pas à cette période.

Une séquence annuelle 1984, par exemple, calculée entre deux minimums (étiage du cours d'eau ou de la surface piézométrique) débute en novembre 1984 et s'achève en octobre 1985. Elle determine l'année hydrologique 1984-85. Au cours d'années successives, les minimums ne sont pas identiques. D'où ncessité, pour obtenir des valeurs significatives, de considérer la moyenne de plusieurs années, dix au minimum, dite année hydrologique moyenne.

1.3 - Alimentation du bassin hydrologique - Précipitation efficaces

La source unique d'alimentation du bassin hydrologique, supposé clos, est procurée par les précipitations efficaces. Elles representent la quantité d'eau fournie par les précipitations qui reste disponible, à la surface du sol, après soustraction des pertes par evapotranspiration potentielle.

131 Evapotranspiration potentielle.

L'émission de vapeur d'eau, ou évapotranspiration, considérée comme une perte par les hydrogéologues, s'effectue dans tous les milieux. Elle résulte de deux phénomènes, l'un physique l'évaporation, l'autre biologique la transpiration. L'évaporation intervient dans l'atmosphère, au cours des chutes de pluies, à la surface des lacs et des cours d'eau, ainsi que du sol nu. La transpiration est le fait de la couverture végétale. L'évapotranspiration dans le sol atteint une profondeur de quelques mètres selon ses caractéristiques et le climat.

•

.

La quantité d'eau évaporée par un stock d'eau libre (cours d'eau,lac, etc...) donc dans des conditions d'alimentation excedentaires est l'évaporation potentielle (fig I-4). Elle est déterminée par les caractéristiques de l'air fixant le pouvoir évaporant de l'atmosphère et de la surface d'eau libre.

Les pertes d'eau d'un sol sont déterminées par sa couverture végétale, sa lithologie et ses paramètres hydrodynamiques, perméabilité verticale, humidité, profondeur de la surface piézométrique. Cependant, la quantité d'eau contenue dans le sol suceptible d'être transformée en vapeur est une caractéristique importante. C'est la réserve en eau facilement utilisable (RFU) ou réserve en eau du sol, exprimée en mm de hauteur d'eau. Cette quantité d'eau est dépensée par le pouvoir évaporant de l'atmosphère (évaporation potentielle) et l'activité biologique (transpiration) soit par l'évapotranspiration potentielle, (ETP).

1.3.2 Evapotranspiration réelle

Les pertes d'eau d'un sol atteignent l'évaporatranspiration potentielle si le stock d'eau de la RFU lui est supérieur ou égal (fig I-4). En cas d'insuffisance, elles sont limitées à une quantité plus petite. Cette limite est l'évapotranspiration réelle, (ETR).

Précipitations efficaces

Les précipitations efficaces, PE, sont égales à la difference entre les précipitations et l'évapotranspiration réelle, ETR.

$$PE = P - ETR$$

1.4 Alimentation du bassin hydrologique - Infiltration

L'eau des précipitations efficaces est répartie à la surface du sol en deux fractions fixes, conventionnelles, inégales:

- Le ruissellement, R, qui alimente l'écoulement de surface Q, direct, rapide (quelques heures à quelques jours) à la surface du sol

!			
,			
			,
		•	
	•		

- L'infiltration I, quantité d'eau franchissant la surface du sol. Elle renouvelle les stocks d'eau souterraine et entretient le débit de l'écoulement souterrain des sorties àprès circulation dans les formations hydrogéologiques perméables du sous-sol.

La hauteur d'infiltration est la quantité d'eau infiltrée à travers la surface du sol pendant une durée determinée. Elle est exprimée en mm/an. C'est aussi la lame d'eau infiltrée.

Le taux d'infiltration est le rapport entre une hauteur d'infiltration et une hauteur de précipitation efficace.

L'alimentation spécifique ou module spécifique d'alimentation est le quotient des quantités d'eau globale apportées en moyenne à une nappe pendant une durée définie, par l'aire de l'aquifère consideré. Cette alimentation moyenne, par unité de surface, s'exprime en 1/s - Km².

1.5 Alimentation de l'Aquifère _ Infiltration efficace

L'aquifère est alimentée par l'infiltration efficace IE (fig I). C'est la quantité d'eau qui parvient à la surface de la
nappe. En effet, au cours de son trajet, entre la surface du sol et
la surface de la nappe, l'eau d'infiltration subit des pertes par évapotranspiration.

1.6 Débits des écoulements des systèmes hydrologiques

1- Débit de l'écoulement total du bassin hydrologique

La sortie du bassin hydrologique est mesurée à son exutoire principal, par le débit de l'écoulement total naturel moyen QT. Le terme naturel implique le fait que le débit des cours d'eau du bassin n'est pas modifié par des interventions humaines. Par simplification, il sera nommé écoulement total.

La scritte ou ...

pal, par in des bluc l'écont de blu cour un archousepar CI. Le semas duburé injuire de la cour de bluc d'espanding de semas duburé injuir que la cour de cour d'espanding de la cour de la cou

En équilibre naturel, sur une longue période, l'écoulement total est égal aux précipitations efficaces.

Débit de l'écoulement souterrain du bassin hydrogéologique et de l'aquifère.

Le débit de l'écoulement souterrain naturel moyen represente les sorties du bassin hydrogéologique ou de l'aquifère. C'est-à-dire, son drainage par les cours d'eau et l'alimentation des sources du bassin hydrologique. Il assure le débit des rivières en absence de précipitations.

En équilibre naturel, sur une longue période, il est égal à l'infiltration pour le bassin hydrogéologique et à l'infiltration efficace pour l'aquifère.

L'écoulement total est la somme de l'écoulement souterrain et de l'écoulement de surface. (Tableau I - 2)

I.7 Bilan d'eau

L'établissement du bilan d'un domaine hydrologique est une opération comptable comparable à celle d'un relevé bancaire. C'est la balance comptable des entrées (recettes) égales au débit moyen des apports et des sorties (dépenses) representées par le débit moyen des écoulements. (Tableau I-3)

Présentation du bilan

Le bilan est présenté sous deux formes:

- tableau des débits des apports et des écoulements, analogue à un relevé de compte bancaire
- expression de l'équilibre hydrologique traduisant l'égalité, en régime naturel, des débits des apports et des débits des écoulements.

débits des apports = débits des écoulements

Commence of the second second second

- → UPTIAPO una détito dos apporto en des éspace acta;
 → DATIA por É DE TOLLIDE de Lougio Connectina
- exprinación de l'écultibre hydrologique presiminant l'égallés, en neugira national, ces ficits de apporta en dos sinits ses écholements.

remains found and addition a edition as an establish

Pour une courte durée d'observations, la différence de reserve, positive ou négative ΔR , doit être prise en compte.

débits des apports = débits des écoulements $\pm \Delta R$

Etablissement du bilan

Dans le bassin hydrologique, d'ordre de grandeur de quelques centaines à quelques milliers de Km² les apports sont fournis par les précipitations efficaces, PE et les sorties par le débit de l'écoulement total, QT.

$$PE = QT$$

Sur de courtes périodes, il faut tenir compte de la différence de réserves, positive ou négative. ΔR

$$PE = QT \pm \Delta R$$

Dans le bassin hydrogéologique les débits des apports sont représentés par l'infiltration, I, fraction des précipitations efficaces et les sorties par le débit de l'écoulement souterrain.

Dans l'aquifère le débit des apports est l'infiltration efficace, IE. La sortie est representée par le débit de l'écoulement souterrain, QW, souvent augmenté des débits des prélèvements, QEX.

· Bilan global moyen annuel d'une grande région

Le bilan global moyen annuel d'une grande région ou d'un pays, d'ordre de grandeur de plusieurs milliers de $\rm Km^2$ est obtenu par la somme des bilans des bassins hydrologiques qui le constituent. (Tableau I - 3)

1.8 - Conclusions

Le domaine unitaire du cycle de l'eau et des évaluation qui en découlent, bilan, réserves et ressources en eau, est le bassin hydrologique. Le volume d'eau stocké ou en circulation, constitue une unité du

double point de vue quantitatif et qualitatif. La partition en systèmes plus petits, bassin hydrogéologique et aquifère, purement conventionnel ne doit pas faire oublier cette unicité. Les intercommunications entre les systèmes hydrologiques emboités, sont schématisés par les bilans (Tableau I-4)

Tableau I-I Capacités des grands réservoirs d'eau à la surface de la Terre. D'après les travaux soviétiques (UNESCO, 1978).

	Volum	es d'eau s	tock és	
Grands	Totau	х .	Eau douce	
réservoirs	km ³	%	km³	%
OCEANS	1340000000	96,4	·	
GLACES Calottes glaciaires, glaciers et neiges éternelles	24000000	1,72	24000000	60
EAUX SOUTERRAINE Aquifères: tranche 0-200 m tranche 0-2000 m tranche 0-5000 m Humidité du sol	10000000 2400000 6000000 16500	1,72 0,001	16000000 16500	40 0,04
EAUX DE SURFACE DES CONTINENTS Lacs, grands réservoirs Lits des cours d'eau	1 76400 2120	0,013 0,00015	90000 2120	0,22 0,005
ATMOSPHÈRE	13000	0,001	13000	0,03
EÁU BIOLOGIQUE	1120	0 0001	1120	0,003
GLOBE Hydrosph ère	1390000000		40000000*	

^{*} soit 2,9 pour cent de l'eau du globe.

.

Tableau I-2 Volumes d'eau stockés dans le réservoir souterrain des grands continents.

D'après les travaux soviétiques (UNESCO, 1978).

	Surfaces		Stocks 10 ⁶		
Grands	millions	0 à	100 à	200 a	Totaux
continents	de km²	100 m	200	2 000	
Europe	10,5	0,2	0,3	1,1	1,6
Asie	43,5	1,3	2,1	4,4	7,8
Afrique	30,1	1	1,5	3	5,5
Amérique du Nord	24,2	0,7	1,2	2,4	4,3
Amérique du Sud	17,8	0,3	0,9	1,8	3
Australie	8,9	0,1	0,2	0,9	1,2
Totaux	135	3,6	6,2	13,6	23,4

Tableau I 3 Écoulement total naturel moyen et écoulement souterrain dans les grands continents.

D'après les travaux soviétiques (UNESCO, 1978).

	Ecoulement total naturel	Écouleme	ent souterrain
Grands continents	moyen km³/an	%	km³/an
Europe Asie Afrique Amérique du Nord Amérique du Sud Australie	3 210 14 410 4 570 7 450 11 760 2 390	35 26 35 29 35 24	1 120 3 750 1 600 2 160 4 120 575
Total Moyenne	43 790	30	13 320

			*1
ę.			pro maistrati
,			
		•	

Tableau I 4 Composantes des bilans. Données moyennes exprimées en termes de débits. Pour la clarté du texte, les dénominations ont été abrégées.

Débits des apports		Débits des pertes et écouler	nents
BASSIN HYDROLOGIQ Précipitations Précipitations efficaces	UE P PE	Évapotranspiration potentielle Évapotranspiration réelle Écoulement total	ETP ETR QT
BASSIN HYDROGEOLOGIQUE Débit d'alimentation Infiltration	QA 1	Écoulement souterrain Prélèvements	QW QEX
AQUIFERE Infiltration efficace	IE		
Di	ffére	nce de réserve \(\Delta W\)	

}				

TABLEAU I-5 Bilan Global moyen annuel des grands domaines du cycle de l'eau: continents, D'après les documents publiés depuis 1970 (UNESCO, 1978). océans et globe.

CONTINENTS	Jaumy	Daumy, otner	·	Mo	e in	1070		Lvovich	Ch
	 ;			200	904 TCV - que , 121 406	1			
	ס	7	Q	70	E	01	70	ET	QT
Europe	6,6	3,6	2,5	8,3	5,3	۰ <u>,</u> د	2:	4.1	3.1
Asie	30,7	1.8.5	12,2	7. 7	9	14,1	-2,7	19,5	13,2
V3 Tdie	ر. 1-3,7	7.3	3,4	27	17.7	1.1	اه	16.61	4,2
AJ Staliz	7,	-	74	, !	7,0	25	4,	7.1	2,0
Am ique du Nord	15,6	7,7	ر بو	ر ت _ا	1,0,1	8,3	9	7,9	6,6
Aires Equit ou Sud	0,0	12,5	II,	; - -	16,2	12,2	+6.2	19,	10,4
Λn':arτique	2,4	7,0	ر 2		c	2,3		•	,
[. il pour les continents		71	40	119	72	47	113	7.	41
CCEVINS	085		1	7,5	33	7.7	12	:53	
		:	> 		•	> 	1 1 1	725	>

N.E. P, précipitations; ET, évaporation ou évapote spiration n'e delle; (i, écoulement total naturel moven.

référence de l'établissement du bilan dont l'équation d'équilibre s'écrit: P=E-QT. Le signe - appar ît dans le QT des océans car c'est un apport extérieur au domaine de Les chiffres de Lyovich ont été surescimés afin d'inclume l'Antartique.

	; = ;	·	
į			

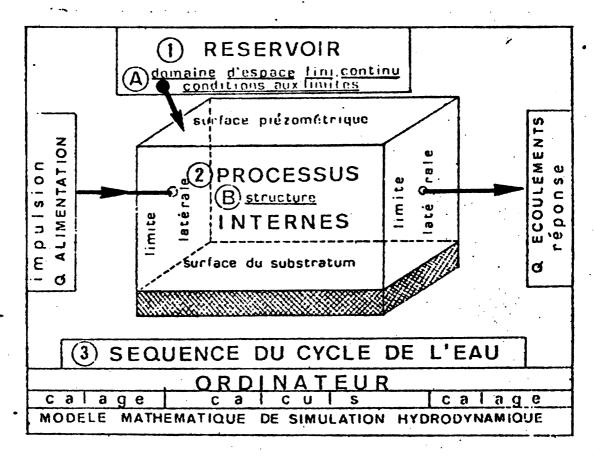


Figure 1-1-Schéma d'identification du système aquisère.

ng serial (1965) Ng serial (1965)

.

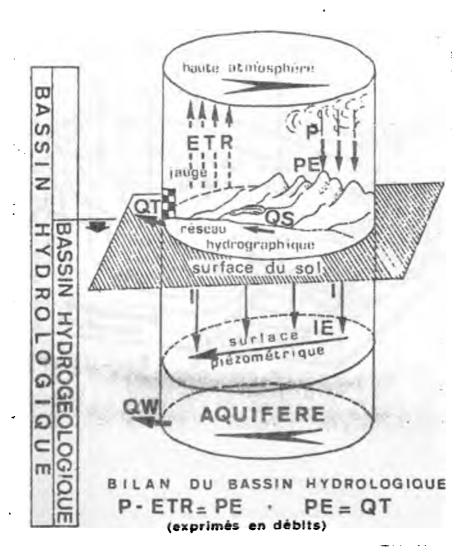


Fig. I-2. Trois domaines d'espaces identifient trois systèmes hydrologiques emboités de grandeurs décroissantes: bassin hydrologique, bassin hydrogéologique et aquifère. P. précipitations; ETR, évapotranspiration réelle; PE, précipitations efficaces; QT, débit de l'écoulement total mesuré à la station de jaugeage de l'exécutoire du bassin hydrologique; QS, débit de l'écoulement de surface; I, infiltration; IE, infiltration efficace; QW, débit de l'écoulement souterrain.

coupoupoularity to access to a contribution of a contribution of a contribution of the contribution of a contribution of a contribution of a contribution of the contr

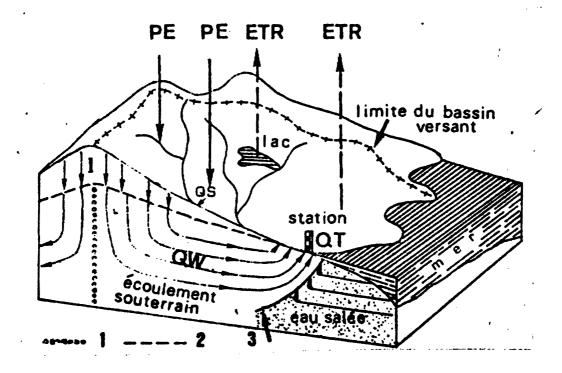


Figure I-3: Le domaine du bassin hydrologique, délimité par le bassin versant d'un cours d'eau, est l'unité de référence pour toutes les évaluations. Il coincide au mieux avec le bassin hydrogéologique, limité par les lignes de partage des eaux souterraines (1). Le contact eau douce/eau sàlée (3), (2), surface piézométrique.

÷		

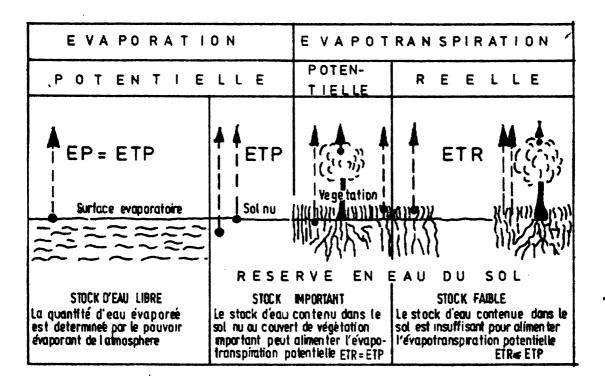


Figure I-4. Evaporation, évapotranspiration potentielle et réelle.

DEUXIEME PARTIE

IDENTIFICATION DE L'AQUIFERE

2.1- Identification Géologique

La géologie, moyen d'étude de l'eau souterraine, est la base fondamentale de l'hydrogéologie.

La géologie identifie des formations lithostratigraphiques par les caractéristiques des matériaux et la structure du sous-sol. Cellesci déterminent, (complètées par des informations sur l'eau souterraine) les formations hydrogéologiques.

Les formations hydrogéologiques perméables constituent les gisements d'eau souterraine ou aquifères, dont elles identifient la configuration et la structure du réservoir.

La localisation en profondeur et l'extension géographique des aquifères ou zones hydrogéologiques, sont étroitement liées à celles des formations hydrogéologiques.

Les caractéristiques géochimiques des réservoirs agissent sur la qualité de l'eau souterraine.

L'identification d'un aquifère repose sur trois critères: géologiques, hydrodynamiques, et hydrochimiques. L'alimentation, le stockage
et l'écoulement de l'eau souterraine sont imposés, en premier lieu, par
la géologie, base fondamentale de l'hydrogéologie. La géologie identifie, par des études stratigraphiques et structurales, des formations
lithostratigraphiques.

Un aquifère est un système hydrologique. Il est donc identifié, tout d'abord, par un domaine d'espace souterrain fini et continu, appelé réservoir. Le réservoir est caractérisé par trois ensembles de données:

÷			
	•		

- sa configuration ou enveloppe, décrivant son contour, ses dimensions (volume) et la nature de ses limites géologiques:
- sa localisation dans le sous-sol par l'altitude et la profondeur des limites géologiques;
- sa structure ou anatomie, déterminée par la lithologie et l'analyse structurale. Elle est identifiée par les caractéristiques physiques (pétrologie, granulométrie, faciès, etc.), géochimiques (sels solubles) et structurales (déformations, fissuration) des matériaux qui constituent le réservoir.

Les caractéristiques géologiques ont varié dans le temps. Leur étude porte donc sur leur genèse et leur distribution dans l'espace (variabilité spatiale).

Il en résulte que l'étude hydrogéologique, dont le but essentiel est l'identification des aquifères, débute par celle des réservoirs.

2.1.1. Formations lithostratigraphiques et hydrogéologiques

La configuration et la structure des réservoirs sont imposées par les formations lithostratigraphiques, lesquelles déterminent les formations et les structures hydrogéologiques. Celles-ci sont la base de l'identification géologique des aquifères.

2.1.1.1. Identification des formations lithostratigraphiques

Une formation lithostratigraphique est constituée par un corps de terrain de nature pétrographique homogène: sable, calcaire, grès, granit, argile, gypse, etc. Elle est désignée par le nom de la région (ou de la localité) où elle a été observée et décrite ou par un terme d'étage. Exemples: Formation de la Rivière Grise, Alluvions de la Plaine de Léogane etc.

Elle est identifiée par trois ensembles de données fixes: surfaces limites, localisation dans le sous-sol et structure.

Surfaces limites du réservoir

Les surfaces limites du réservoir, inférieure ou substratum, supérieure ou toit et latérales (affleurements, passage latéral de faciès,
failles) identifient les conditions aux limites géologiques. Ces limites fixes ne correspondent pas nécessairement avec celles des subdivimsions chronologiques basées sur la datation géologique ou unités chronostratigraphiques (étage, sous-étages, zones, etc.) La formation lithostratigraphique est attribuée en totalité ou en partie, à cette unité,
voire à plusieurs d'entre elles. Exemples: Les sédiments de la Plaine
du Cul de sac sont constitués d'alluvions récentes déposées sur des séries quaternaire qui elles-même, sont sur les formations du pliomiocène.
Les données numériques sont la superficie et l'épaisseur permettant le
calcul du volume du reservoir.

Structure du réservoir

La pétrologie, la sédimentologie, l'analyse structurale et la géochimie, déterminent les caractéristiques physiques et chimiques du néservoir. C'est à dire sa structure. Une importance particulière est apportée à la granulométrie et à la fissuration. La distribution des données dans l'espace est exprimée par des coupes et des cartes structurales. Ces documents sont utilisés comme trame de l'interpolation des données ponctuelles sur les paramètres hydrodynamiques et hydrochimiques. Elle permet d'avoir ainsi des cartes de transmitivité, de granulométrie, de faciès etc.

2.1.1.2 Identification des formations hydrogéologiques et des aquifères.

Dans le but de progresser dans l'idenfication des aquifères, le concept géologique de formations lithostratigraphiques doit être complété par des données sur l'eau souterraine. En effet, celle-ci est toujours présente quelles que soient la nature des matériaux et la profondeur de gisement. L'ensemble des données géologiques, hydro-géologiques et hydrochimique identifie une formation hydrogéologique (hydrogéologic unit des auteurs anglo-saxons)

Une formation hydrogéologique est une formation lithostratigraphique ou leur combinaison, ayant des fonctions globales vis-à-vis du stockage et de l'écoulement de l'eau souterraine. Trois ordres de grandeurs sont à considérer:

- une formation hydrogéologique identifiant un aquifère, un toit ou un substratum ou un semi-perméable.
- La combinaison de formations hydrogéologiques perméables et semiperméables, identifiant un aquifère multicouche.
- La combinaison de nombreuses formations hydrogéologiques constituant une structure hydrogéologique.

La caractéristique essentielle d'une formation hydrogéologique est son degré de perméabilité. La perméabilité, aptitude d'un réservoir à conduire l'écoulement de l'eau, dans des conditions hydrodynamiques imposées, permet un classement en trois grandes catégories: perméables, imperméables et semi-perméables (fig II - 1)

Formation hydrogéologiques perméables, gisements d'eau souterraine origine des aquifères

Les matériaux ayant la propriété de se laisser traverser par l'eau à des vitesses appréciables (quelques mètres à des milliers de mètres par an), sous l'impulsion de différences d'altitudes ou pente de la nappe appelés gradients sont dits perméables (fig II - 1). Ils constituent les formations hydrogéologiques perméables, origine exclusive des gisements d'eau souterraine ou aquifères. Ce sont: les graviers, les alluvions, les sables gros et moyens, les calcaires fissurés, les roches volcaniques fissurées, etc... Ex: la plaine de Léogane

Formation hydrogéologiques imperméables imposant les limites géologiques des aquifères

Les vitesses d'écoulement de l'eau souterraine, dans certains matériaux, sont très faibles, pratiquement non mesurables (quelques mil-

			4
	•		1
1			
•			
			!
			i
			1
			!
			1
			1

limètres par an). Qualifiés d'imperméables ils constituent les formations hydrogéologiques imperméables imposant les limites géologiques des aquifères. Les grandes quantités d'eau qu'elles renferment ne peuvent être exploitées. Ce sont les silts, les argiles, les marnes, les schistes etc. Ex: Le plateau Central

Formation hydrogéologiques semi-perméables à l'origine de l'aquifère multicouche

Certains matériaux, comme les sables très fins, les sables argileux, de très faible perméabilité permettent, dans des conditions hydrodynamiques favorables, les échanges verticaux ascendants ou descendants
entre aquifères superposés, par un phénomène naturel appelé la drainance
(anglais : leakage). Ils constituent les formations hydrogéologiques
semi-perméables (fig II - 1). Les échanges d'eau peuvent atteindre
des quantités importantes à l'échelle d'un bassin hydrogéologique compte tenu des surfaces, (milliers de Km²) et des durées (siècles, millénaires). Une structure hydrogéologique, constituée d'une alternance
de formations hydrogéologiques perméables et semi-perméables identifie un
aquifère multicouche (Ex: aquifère multicouche du calcaire de Champigny

Conclusions. Bassin hydrogéologique

Contrairement à l'opinion courante les formations hydrogéologiques, dites perméables, ne sont pas étanches. Elles constituent rarement des écrans isolant les aquifères. La frontière entre la perméabilité et l'imperméabilité est imprécise, le passage d'une propriété à l'autre étant continu avec des matériaux intermédiaires dits semiperméables. Des études récentes ont montré que les formations hydrogéologiques imperméables sont rares. Il en résulte que les aquifères d'un bassin sédimentaire constituent un complexe unique, le bassin hydrogéologique où les circulations verticales sont importantes et souvent prédominantes sur les écoulements latéraux.

2.1.2 Extension géographique des aquigères. Zones hydrogéologiques

L'extension géographique des aquifères est liée étroitement a celle des formations hydrogéologiques perméables. Un aquifère est identifié géographiquement par une fraction, la totalité ou plusieurs formations hydrogéologiques. D'où l'importance de l'étude géologique détaillée par toutes les méthodes modernes de la lithologie, de la sédimentologie de la paléogéographie et de la géologie structurale. Les identifications dans l'espace sont obtenues par la synthèse des colonnes hydrogéologiques et de l'étude des affleurements, appuyées sur les prospections géophysiques.

- Les caractéristiques géochimiques du réservoir (sels solubles) interviennent dans la composition chimique de l'eau souterraine, déterminant leur qualité. parfois la détorioration de la qualité de l'eau limite, pour l'évaluation de la ressource, l'extension latérale de l'aquifère. Il est alors nécessaire de tenir compte du volume utile du réservoir.

Extension géographique des formations hydrogéologiques perméables, caractéristiques géochimiques du réservoir et régime de l'écoulement de l'eau souterraine, délimitent des zones hydrogéologiques.

Détermination du volume utile du réservoir

Le volume utile du réservoir, base de toutes les estimations, est déterminé par deux caractéristiques:

L'épaisseur utile obtenue par sommation de celles des formations hydrogéologiques perméables, identifiées par l'interprétation des données de sondages présentées sur la colonne hydrogéologique (échantillons et diagraphies). Une teneur limite en argiles est fixée, 50% par exemple.

- La teneur limite tolérée en sels dissous de l'eau souterraine, 6g/l ou eaux séliniteuses par exemple.

.

•

2.1.3 Conclusions

L'étude hydrogéologique régionale débute par l'identification des formations et des structures hydrogéologiques, base de celle des aquifères. Cette identification applique toutes les méthodes et techniques de la géologie stratigraphique et structurale. La régionalisation des données ponctuelles, recueillies sur les affleurements, dans les sondages et par les propections géophysiques, est exprimée par des cartes de faciés et des cartes structurales en courbes isohypses (égale altitude) des toits et des substratums et en courbes isopaches (égale épaisseur). Ces documents constituent la trame du réservoir sur laquelle peut être calquée la distribution des caractéristiques hydrodynamiques et hydrochimiques des aquifères.

2.1.4. Cas concrets d'identification géologiques des Aquifères de la Plaine du Cul de Sac

La plaine du Cul de Sac (P.C.S.) est la dépression qui sépare ces deux unités morphologiques Nord et Sud. C'est une plaine alluvia-le de 30 Km de long sur 16 de large, soit environ 500 Km² de superficie. La plaine du Cul de Sac, encadrée par un bassin versant de 1 400 Km², est limitée:

- au Sud par la ligne de crêtes du Massif de la Selle, d'où sortent deux principales rivières qui arrosent la plaine (La Rivière Grise et la Rivière Blanche).
- au Nord, par la chaine des Matheux et du Trou d'eau
- à l'ouest, par la mer (Baie de Port au Prince)
- à l'Est par un étang : l'Etang saumâtre.

La surface du bassin versant se répartit ainsi:

300 Km² pour le versant Nord

600 Km² pour le versant Sud, dont 280 Km² pour le bassin versant de la rivière grise et 170 Km² pour la Rivière blanche.

500 Km² pour la plaine proprement dite.

L'altitude de la plaine varie entre 0 et 60 mètres. Son relief peu accentué a une pente assez faible (environ 1 %) et il est caractérisé par deux directions principales d'écoulement.

- - Une première Est-Ouest, séparée par une ligne médiane N.S. partage les eaux de surface en deux parties: l'ouest reliée à la mer (bassin versant de la rivière grise) et l'Est reliée à l'Etang . saumâtre et au Trou Caiman (bassin versant de la Rivière blanche).
- -- Une seconde direction N.S. avec la partie méridionale plus accidentée du fait de l'importance des cônes de déjection des rivières Grise et Blanche. L'altitude moyenne dans ce secteur est d'environ 60m.

Vers le Sud-Est, le relief plan est interrompu par quelques collines qui culminent à plus de 150 m.

La plaine est encadrée des reliefs assez élevés: au sud le massif de la Selle atteint 2 680 mètre et au Nord, la chaine des Matheux culmine à 1 600 mètres

La plaine est essentiellement constituée de formations sédimentaires à l'exception des basaltes quaternaires de la région de Thomazeau. Ce sont des formations hétérogènes allant du détritiques grossiers aux limons et argiles. Les calcaires n'ont que très peu d'intérêt hydrogéologique en profondeur (les puissantes séries détritiques au-dessus les rendant accessibles que par forage très profonds). Ils jouent un rôle très important dans l'alimentation latérale de la nappe. C'est pourquoi les formations sédimentaires détritiques Mio-Plio-Quaternaires constituent le réservoir principal de la région, malgré sa très grande hétérogénéité. Cependant, les puits forés dans la plaine n'atteignent qu'exceptionnellement 200 mètres, aussi, seule cette épaisseur de terrain, uniquement constitué par des formations quaternaires et récentes, n'a pu être étudiée.

2-2 Identification hydrodynamique de l'aquifère

L'aquifère est un système dynamique caractérisé par sa configuration et sa structure, les fonctions de son réservoir et ses comportements

- La configuration et sa structure permettent de distinguer trois types: hydrodynamiques à nappes libre, à nappe captive et à nappe semi-captive

- l'aquifère est constitué de deux phases principales en interactions: le réservoir et l'eau souterraine
- Le réservoir par sa structure, remplit trois fonctions vis-à-vis de l'eau souterraine : réservoir conduite et milieu d'échanges géochimiques
- L'aquifère présente, en réponse à des incitations extérieures, trois comportements: hydrodynamique, hydrochimique et hydrobiologique.

L'aquifère a été identifié précédemment par la formation hyperogéologique qui le constitue. Il convient maintenant d'envisager la présence et l'écoulement de l'eau souterraine et les interaction eau/roche.

2-2.1 Concept'd'aquifère

Un aquifère (acque = eau ; fera = je porte) est une formation hydrogéologique perméable permettant l'écoulement significatif d'une nappe d'eau souterraine et le captage de quantités d'eau appréciables, par des moyens économiques. Il est comparable à un gisement minier, dont le minerai l'eau, est plus ou moins renouvelable. Si le synonyme de nappe d'eau souterraine est souvent utilisé dans la terminologie française celui, par contre, de nappe aquifère est à proscrire.

L'aquifère est un système hydrologique, hydrodynamique. Il est donc identifié par cinq ensembles de caractéristiques quantifiables (fig II - 2)

- Un réservoir (I) domaine d'espace fini, caractérisé par ses conditions aux limites et ses dimensions ou condiguration(A) et par son organisation interne ou structure (B). Il est identifié par une (ou une combinaison de) formation hydrogéologique.

1				
			•	
1				
1				
	•			
	•			

- des processus internes ou mécanisme (2) hydrodynamiques, hydrochimiques et hydrobiologiques, entraînant trois fonctions du réservoir vis-à-vis de l'eau souterraine: stockage, conduite (transfert de quantité d'eau ou d'énergie) et milieu d'échanges géochimiques
- Une séquence du cycle de l'eau avec des interaction avec l'environ, nement se traduisant par trois comportements, hydrodynamique, hydrochimique et hydrobiologique. Elle est caractérisée par le couple impulsion/réponse exprimé par une relation ou fonction de transfert.

La variabilité dans l'espace de ces caractéristiques

- Des conditions de temps, toutes les mesures des caractéristiques étant rapportées à une date donnée (état initial) ou à une durée moyenne (variabilité des caractéristiques dans le temps). Ces dernières, basées sur des historiques permettent les prévisions.

Le système aquifère peut être représenté par un modèle conceptuel base de la modélisation.

2.2.2- Configuration de l'aquifère types hydrodynamiques

La configuration ou enveloppe, de l'aquifère porte sur ses dimensions et les caractéristiques de ses limites géologiques et hydrodynamiques aux conditions aux limites.

La base de l'aquifère, appelée substratum est constituée par une formation hydrogéologique imperméable. Par contre sa limite supérieure est de trois types:

- hydrodynamique avec fluctuations libres: aquifere à nappe libre
- géologique imperméable; aquifère à nappe captive
- géologique semi-perméable: aquifère a nappe semi-captive

•				
	et e et e			
٠.				
		•		

2.2.2.1 Aquifère a nappe libre. Surface piézomètrique

Les puits et sondages du premier aquifère, rencontré sous la surface du sol, présentent un niveau d'eau dont l'altitude (élévation au-dessus de la cote 0) est appelé par convention, le niveau piézométrique, noté H (fig II - 3). Souvent ce niveau est mesuré dans des ouvrages de petit diamètre, appelés piézomètres. L'ensemble des niveaux piézométriques mesurés en différents points à une date donnée, détermine la surface piézométrique. De même que les cotes du niveau du sol permettent de tracer la surface topographique, elle est représentée sur les cartes piézométriques par des courbes d'égal niveau piézométrique ou courbes hydroisohypses.

La surface piézométrique constitue la limite supérieure de l'aquifère. C'est une limite hydrodynamique. Cette surface peut s'é-lever ou s'abaisser librement dans la formation hydrogéologique perméable. (fluctuations de la surface piézométrique), d'où la dénomination d'aquifère a nappe libre. L'ancien terme d'aquifère phréatique (phreos=puits)parfois utilisé, est déconseillé.

2.2.2.2 Aquifère a nappe captive

Dans les aquifères plus profonds les eaux souterraines sont emprisonnées dans la formation hydrogéologique perméable, entre deux formations imperméables fixes; le substratum à la base et le toit au sommet (fig II - 4). Etant donné la situation en profondeur, l'aquifère (réservoir et eau) subit une pression dirigée de haut en bas, égale au poids de la colonne de terrains de densité moyenne 2,5 (soit 2,5/ par tranche de 10m) qui le surmonte jusqu'à la surface du sol. La pression atmosphérique étant négligeable, cette pression, dite géostatique, est équilibrée par la pression de couche ou de pore qui règne à l'intérieur de l'aquifère. Par exemple dans l'aquifère multicouche des sables albiens du bassin de Paris, dont la base du toit est à 600m de profondeur

,		

sous la capitale, la pression de couche est de 150 bar. Lorsqu'un sondage perce le toit de l'aquifère la substitution au poids de la colonne de terrain de celui d'une colonne d'eau (densité l) entraîne une chute de pression dans l'aquifère. D'où la décompression du réservoir et de l'eau qui est expulsée. Son niveau se stabilise à une altitude qui représente le niveau piézométrique, H, détermine par la différence de charge entre la zone d'alimentation et l'ouvrage considéré (fig II - 5). Ce type est l'aquifère à nappe captive.

Les eaux souterraines sont dites ascendantes. Si le niveau piézométrique se situe au-dessus de la surface du sol, l'eau jaillit naturellement. C'est <u>l'artésianisme</u> (fig. II - 4). Donc, si le captage des aquifères profonds exige des sondages coûteux, leur exploitation s'effectue souvent à faible profondeur et parfois même sans pompage, l'artésianisme produisant un débit naturel en surface.

Comme pour les aquifères à nappe libre, l'ensemble des niveaux piézométriques permet de tracer la surface piézométrique. Mais celleci, fictive, n'est pas matérialisée sur le terrain. Elle n'indique pas la profondeur de l'eau sous la surface du sol.

2.2.2.3 Aquifère à nappe semi-captive ou à drainance

Le toit ou le substratum (ou les deux) de l'aquifère sont souvent constitués par une formation hydrogéologique semi-perméable. Celleci permet, dans certaines conditions hydrodynamiques favorables (différences de charges) des échanges d'eau (ou de pression) avec l'aquifère superposé ou sous-jacent, appelé <u>drainance</u> (fig II - 7). Ce phénomène implique un aquifère à nappe semi-captive.

2.2.2.4 Nature du substratum de l'aquifère

La nature des formations hydrogéologiques, constituant la base de l'aquifère, permet de distinguer plusieurs types de substratums:

- formation hydrogéologique semi-perméable constituant un aquifère à nappe semi-captive. La formation est alors incorporée à un aquifère multicouche (fig. II - 7);

	,	
		!

- formation hydrogéologique perméable constituant un aquifère compartimenté. Ce type est représenté par des alluvions reposant sur un réservoir calcaire:
- changement des caractéristiques de la fissuration en profondeur entraînant une diminution importante de la perméabilité. C'est le cas des formations calcaires d'Haiti.
- détérioration de la qualité de l'eau en profondeur. Contact eau douce/ eau salée de l'aquifère cotier affluant à la mer.

2.2.3 Fonction de l'aquifère. Aquifère multicouche

2.2.3.1 Aquifère, complexe unique réservoir / eau souterraine

L'aquifère est un complexe physico-chimique unique de deux constituants essentiels, ou phases, étroitement liés et en interactions (fig. II - 8). A signaler parfois la présence d'une troisième phase avec les gaz, air en particulier;

- le réservoir, phase solide, milieu poreux ou fissuré, constitue la trame de la structure, squelette solide ou matrice. Exemples: grains de sable d'une formation sableuse, roche fissurée de calcaire, etc.
- l'eau souterraine, phase liquide, dont la fraction mobilisable (eau gravitaire) constitue la nappe d'eau souterraine alimentant les sources, rivières et captages.

Les interactions hydrodynamiques, hydrochimiques et hydrobiologiques, entre les deux phases, roche et eau, sont à l'origine des fonctions du réservoir et des comportements de l'aquifère. Elles provoquent la régulation des débits de l'eau souterraine et déterminent sa qualité.

2.2.3.2 Aquifère multicouche

Une combinaison de formations hydrogéologiques semi-perméables intercalées entre des formations perméables, identifie un aquifère multicouche (fig. II ~ 7). C'est un système hydrologique car chaque aquifère à nappe semi-captive ne peut être considéré de manière indépendante. Il présente un comportement hydrodynamique propre, lequel peut être simulé par un modèle mathématique.

Un aquifère multicouche équivalent. Il est identifié par l'épaisseur et le volume utile de son réservoir.

2.2.4 Fonctions de réservoir

Le réservoir de l'aquifère, alimenté par l'infiltration efficace ou par des nappes voisines affluentes, remplit trois fonctions vis-à-vis de l'eau souterraine qui le traverse. Elles sont la conséquence de mécanisme imposés par sa structure (fig II - 9);

- fonction réservoir ou capacitive. Emmagasinement de l'eau (stockage ou libération). Variations de stock. Cette fonction est associée au concept de réserve;
- fonction conduite, conductrice ou de propagation d'influences. Conduite libre dans les aquifères à nappe libre et forcée dans ceux à nappe captive. Cette fonction assure deux types de propagation d'influence:
- . le <u>transport de quantités</u> d'eau, de substances minérales ou organiques en solution ou en suspension et de microorganisme, par l'écoulement de l'eau souterraine des limites d'apports (alimentation) vers celles de sorties (exutoires naturels ou artificiels).

.la transmission de différence de pression ou de charge (transfert d'énergie). Ainsi une fluctuation du niveau piézométrique ne correspond pas nécessairement à un transport de quantité d'eau. Elle peut être provoquée également par la transmission d'une onde de pression (ou de dépression). Par exemple les effets des séismes et les relations aquifère / rivière.

£

La fonction conductrice est associée au concept d'écoulement de l'eau souterraine (flux de l'eau souterraine).

-fonction d'échanges ou d'interactions physico-chimiques permanentes entre le réservoir et l'eau souterraine (interactions roche / eau): chaleur, dissolution ou précipitation de sels, échanges d'ions, etc.

Dans certaines conditions, zone non saturée en particulier, le réservoir remplit également um rôle hydrobiologique par le pouvoir autoépurateur des sols. Cette fonction d'échanges est associé au concept de qualité de l'eau souterraine.

Les réservoirs, suivant leur configuration et leur structure, peuvent remplir l'une ou plusieurs de ces fonctions. Dans un aquifère d'alluvions, en relation avec une rivière, la fonction conductrice est prédominante. Par contre, un grand aquifère à nappe captive remplit surtout une fonction capacitive. Les aquifères à nappe libre, comme les alluvions (plaine PCS, Léogane) sont smultanément capacitifs et conducteurs. Ces exemples montrent l'importance de l'identification des fonctions du réservoir pour la planification de l'exploitation de l'eau souterraine.

- La mise en oeuvre des trois fonctions du réservoir aboutit à une régulation des écoulements et des échanges.

2.2.5 Comportement de l'aquifère-

L'aquifère est un système dynamique qui présente trois comportements vis-à-vis de l'eau souterraine, résultant de l'intervention des fonctions du réservoir en réponse à des incitations extérieures ou impulsions, imposées à ses limites (fig. II - 10). Impulsion, transfert et réponse constituent les comportements de l'aquifère. Ces comportements assurent une régulation des débits et des caractéristiques hydrochimiques; voire hydrobiologiques, des écoulements à la sortie.

L'aquifère réagit à trois types d'impulsions:

-hydrodynamiques affectant le stock et le flux. Apports de quantités d'eau ou variation de pression ou de charge;

-hydrobiologiques par les microorganismes;

L'aquifère par sa configuration, exprimée par les conditions aux limites et par ses mécanismes internes dus à sa structure, présente une sensibilité aux impacts de son environnement. Celle-ci se traduit par ses trois comportements hydrodynamique, hydrochimique et hydrologique.

2.2.5.1 Comportement hydrodynamique de l'aquifère

L'aquifère subit sur ses limites des impulsions hydrodynamiques par des apports de quantités d'eau (transfert de masse) ou de variations de pression ou de charge(transfert d'énergie). Habituellement elles sont de forte intensité et de courte durée. Exemples: apport d'eau d'infiltration sous l'effet d'une averse, onde sismique, etc. En jouant sur ses fonctions, réservoir et conduite, l'aquifère assure une régulation naturelle (modulation) dans l'espace et dans le temps, de sa réponse ou écoulement (fig II - 10). Il remplit un rôle régulateur, appelé parfois fonction régulatrice, comparable à ce lui d'une retenue d'eau de surface envers le régime des cours d'eau.

Les facteurs du comportement hydrodynamique de l'aquifère sont:

-les conditions aux limites: type de limites, débits des apports et des écoulements, niveaux piézométriques;

. -les variations de stock d'eau souterraine ou réserve régulatrice

-le régime de l'écoulement de l'eau souterraine dans l'aquifère, exprimé par le réseau d'écoulement

-l'état initial et les variations dans le temps des trois facteurs précedent; historiques des débits, des niveaux piézométriques et de la réserve régulatrice.

Le comportement hydrodynamique de l'aquifère s'exprime par un modèle conceptuel et par l'équation d'équilibre du bilan. Il est régi par les lois de l'hydrodynamique souterraine

,	

2.2.5.2 Comportement hydrochimique de l'aquifère

L'eau souterraine, au cours de son séjour et de son écoulement dans la formation hydrogéologique perméable, subit des échanges géochimiques avec le réservoir. Ces interactions œu / roche midifient les carctéristiques de l'eau des écoulements.

-Caractéristiques physiques : température, pH, conductivité, etc. Par exemple la température de réservoir augmente avec la profondeur créant des gisements géothermiques basses énergie: Jurassique moyen du centre du bassin de Paris.

-Caractéristiques chimiques: dissolution de sels (eaux séléniteuses du faciès gypseux du calcaire de champigny; précipitations de sels, échanges d'ions avec les minéraux argileux (montmorillonite), modifiant la qualité chimique de l'eau souterraine. Le comportement hydrochimique de l'aquifère est ainsi à l'origine de l'acquisition et des modifications de la qualité physique et chimique et l'eau souterraine des écoulements.

2.2.5.3 Comportement hydrobiologique de l'aquifère

Ce comportement est surtout localisé dans la zone non saturée et à un certain degré, dans la nappe, avec le pouvoir d'autoépuration naturelle des réservoirs. Il assure la protection naturelle de l'eau souterraine, total ou partielle, contre les pollutions accidentelles bactériennes ou chimiques.

			İ

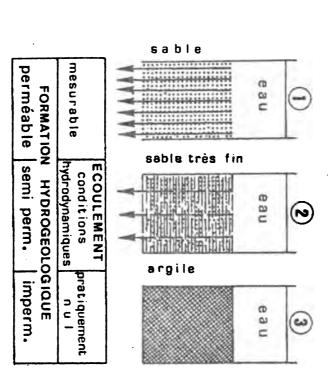


Fig. II-1- Trois grandes catégories de formations hydrogéologiques peuvent être distinguées par leur aptitude à conduire l'écoulement de l'eau ou perméabilité.

		·	
			!

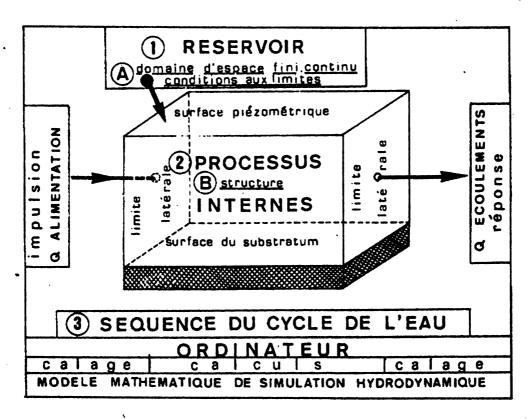
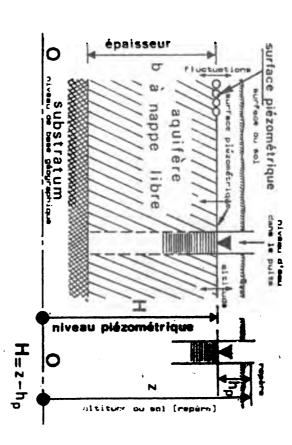



Fig. II-2 - Schéma d'identification du système aquifère.

·		

🚻-3 ` - Schéma de l'aquifère à nappe libre. Mesure du niveau piézométrique.

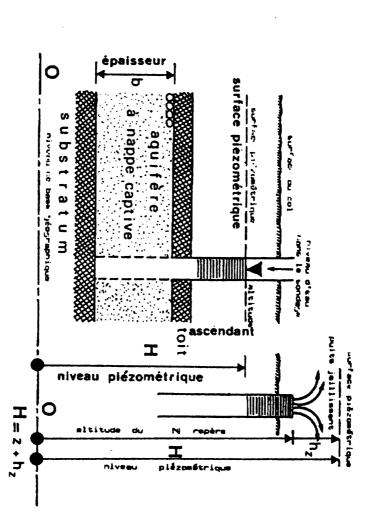


Fig. II-4 - Schéma de l'aquifère à nappe captive. Mesure du niveau piézométrique.

•	
	i
	; ;

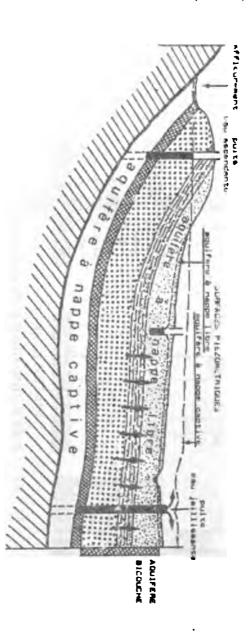
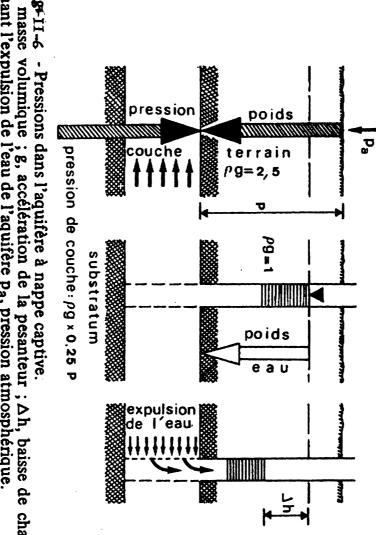



Fig: II-5 - Types hydrodynamiques d'aquifères dans un bassin hydrogéologique.

 ρ , masse volumique; g, accélération de la pesanteur; Δh , baisse de charge provoquant l'expulsion de l'eau de l'aquifère p_a , pression atmosphérique.

•		

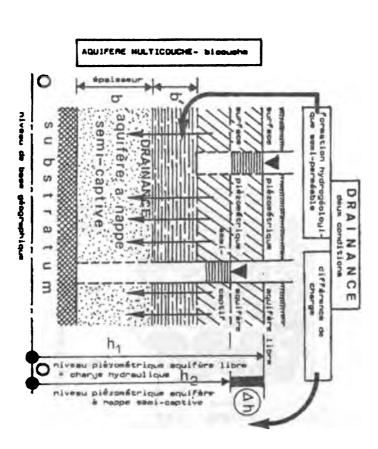
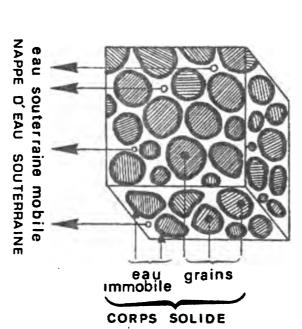
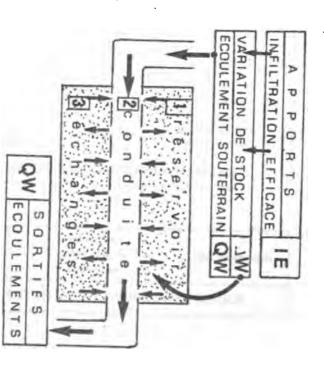
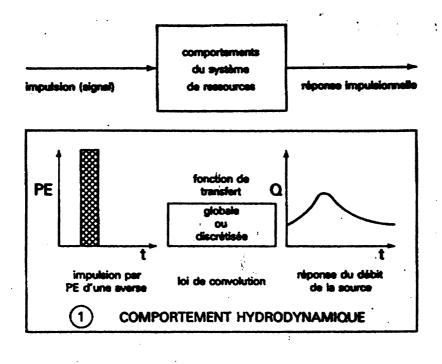


Fig. II-7 - Drainance et aquifère multicouche (bicouche). La drainance exige deux conditions : présence d'une formation hydrogéologique semi-perméable et différence de charge, Δh .

:;


Fig II-8 - L'aquifère est un complexe physico-chimique unique de deux constituants ou phases : le réservoir et l'eau souterraine dont la fraction mobile constitue la nappe d'eau souterraine.

·			

BILAN DE L'AQUIFÈRE: IE=QW±JW

Fig. II-9 - Le réservoir de l'aquifère remplit trois fonctions vis-à-vis de l'eau souterraine : 1, réservoir (capacitive), 2, conduite (conductrice) et 3, échanges physico-chimiques (interactions eau/roche). Fig. 11-9

esu infiltration	intéractions géochimiques eau/milieu	eau souterraine			
2 COMPORTEMENT HYDROGÉOCHIMIQUE					

esu poliuše	autoépuration biologique	eeu épurée	
3 c	OMPORTEMENT HYDROBIO	LOGIQUE	

Figure II-10- L'aquifère, séquence de l'écoulement de l'eau dans le bassin hydrogéologique, présente trois comportements, en réponse aux influences de son environnement: Hydrodynamique, hydrochimique et hydrobiologique.

,				

TROISIEME PARTIE

AQUIFERE CONDUITE D'EAU SOUTERRAINE

La fonction conduite du réservoir permet le transfert de quantités d'eau et la transmission d'influences. Elle est imposée par la structure de l'aquifère: paramètres géométriques et hydrodynamiques.

La loi de Darcy, établie expérimentalement, est la base de l'hydrodynamique souterraine. Elle est applicable sur le terrain dans des conditions bien définies.

331 Loi de Darcy

L'écoulement des eaux souterraines obéit à la loi de Darcy. Cette loi n'est valable que dans des conditions nettement définies:

- Milieu homogène et isotrope;
- substratum imperméable horizontal;
- écoulemnnt en régime laminaire.

3.1.1 Expériance de H. Darcy

H. DARCY a étudié expérimentalement en 1856, l'écoulement de l'eau à travers une colonne de sable. Il a utilisé des cylindres verticaux de 2,50m de haut et de 0,35m de diamètre intérieur remplis de sable, sur une épaisseur l et sous une charge H (fig III - 1). Le matériau aquifère présentait la composition granulométrique suivante:

58% en poids de grains de 0,77mm; 13% en poids de grains de 1,1mm; 12% en poids de grains de 2mm; 17% en poids de graviers La porosité totale était de 38%

L'écoulement est régi par la formule suivante:

$$Q(m^3/s)=K(m/s). S(m^2). \frac{H}{1}$$

Q. étant le débit écoulé, en m³/s

- H, la hauteur de charge d'eau, en m;
- S, la surface de la section, en m²
- K, un coefficient de proportionnalité lié à la nature du sable Pour le sable utilisé:

$$K = 0,0003 \text{m/s} \text{ ou } 3 \times 10^{-4} \text{m/s};$$

1, l'épaisseur de la colonne de sable, en m;

H est la perte de charge par unité de longueur ou perte de charge uni-

taire ou encore gradient hydraulique, noté i, sans dimension.

D'où avec $\frac{H}{1}$ = i, l'expression précedent devient

H. Darcy a démontré ainsi que le volume d'eau qui traverse une colonne de sable est proportionnel à la charge et inversement proportionnel à la longueur de cette colonne.

Le débit unitaire, q, est le débit en m³/s traversant l'unité de section perpendiculaire à la direction de l'écoulement en milieu saturé, dans l'unité de temps en secondes. C'est aussi la quantité d'eau traversant le milieu saturé par unité de surface. Etant le quotient d'un débit par une surface, il a la dimension d'une vitesse et s'exprime en m/s.

$$q(m/s) = \underline{d\acute{e}bit} = \underline{Q}$$
Section totale S

d'où en combinant les expressions précedentes

$$q(m/s) = K(m/s)$$
. i

La vitesse de filtration, V en m/s, rapportée à la section totale, S est:

$$V(m/s) = Q/S = K. 1 = q$$

•		
		.
		·

3.2 Application de la loi de Darcy sur le terrain

3.2.1 Mesure du niveau piézométrique

La mesure du niveau piézométrique est l'opération principale de l'inventaire de la ressource en eau souterraine. Etant l'altitude du niveau d'eau, en équilibre naturel, dans l'ouvrage il est calculé par différence entre la cote du sol (repère sur l'ouvrage), Z et la profondeur de l'eau Hp (H = Z - Hp). Pour une source, c'est l'altitude de l'émergence naturelle H = Z. Dans le cas des sondages artésiens, H = Z + élevation du niveau d'eau au-dessus de sol. (fig III - 2 et fig III - 3)

La profondeur de l'eau, dans l'ouvrage, est mesurée par les sondes; ficelle ou ruban avec flotteur, sondes électriques. Leur précision est de l'ordre de plus ou moins 5mm. Donc celle de H dépend surtout du nivellement. On utilise souvent les limmigraphes qui enregistrent automatiquement les niveaux en continu et donnent des limmigrammes piézométriques.

L'altitude du sol (repère sur l'ouvrage) c soit par lecture de la carte topographique, soit par des opérations de nivellement.

3.2.2 Calcul du gradient hydraulique

Par comparaison entre le dispositif de laboratoire et le terrain le gradient hydraulique est la différence de niveau piézométrique entre deux points de la surface piézométrique, par unité de longueur, mésurée le long d'une ligne de courant. Il est assimilable à la pente de la surface piézométrique.

Dans la pratique, le gradient hydraulique est calculé sur le terrain, à l'aide des niveaux piézométriques mesurés dans deux ouvrages d'observations, alignés sur une ligne de courant. L'un amont, H_1 , l'autre aval H_2 , séparés d'une distance L (fig III - 2)

				1
			·	

$$\frac{1}{L} = \frac{H_1 - H_2}{L} = \frac{112,90 - 11,10}{1200} = 0,0015.$$

Mais la méthode recommandée est celle de l'utilisation des carte piézométriques (fig 111 - 3)

3.3 Paramètres hydrodynamiques

L'expression généralisée de la loi de Darcy dégage trois grands groupes de paramètres de l'écoulement de l'eau souterraine dans les aquifères

- Coefficient de perméabilité, transmissivité, diffusivité.
- débit d'une nappe et vitesses d'écoulement
- charge et gradient hydrauliques

3.3.1 Perméabilité ou Conductivité hydraulique

La perméabilité est l'aptitude d'un réservoir à se laisser traverser par l'eau sous l'effet d'un gradient hydraulique. Elle exprime la résistance du milieu à l'écoulement qui le traverse. Elle est mesurée par deux paramètres: le coefficient de perméabilité ou conductivité hydraulique et la perméabilité intrinsèque.

3.3.2 Coefficient de perméabilité ou conductivité hydraulique de parcy

Le coefficient de perméabilité ou conductivité hydraulique noté K, est défini par la loi de Darcy. C'est le volume d'eau gravitaire en m³ traversant en une unité de temps (une seconde), sous l'effet d'une unité de gradient hydraulique, une unité de section en m³ orthogonale à la direction de l'écoulement, dans les conditions de validité de la loi de Darcy (à la température de 20°C. Il a la dimension d'une vitesse et s'exprime en m/s.

La loi de Darcy s'exprimant en fonction du débit et de la section d'écoulement par l'équation homogène:

$$Q = KS1$$

$$d'où K = Q$$

$$S1$$

. · ;

et pendant l'unité de temps:

$$K = Q$$
Sit

3.3.3. Perméabilité intrinsèque

La perméabilité intrinsèque, notée k, est le volume de liquide en m³ d'unité de viscosité dynámique (une centipoise) traversant en une unité de temps (en s), sous l'effet d'une unité de gradient hydraulique, une unité de section (un m²) orthogonale à la direction d'écoulement. Elle s'exprime en m² ou en darcy.

3.3.4 Transmissivité

La productivité d'un captage dans un aquifère est fonction de son coefficient de perméabilité, K et de son épaisseur, d. La transmissivité est donc un paramètre qui régit le débit d'eau qui s'écoule par unité de largeur, d'un aquifère, sous l'effet d'une unité de gradient hydraulique, i. Il évalue la fonction conduite de l'aquifère.

La transmissivité est égale au produit du coefficient de perméabilité, K, par l'épaisseur de l'aquifère, d . Elle s'exprime en m^2/s .

Transmissivité $T(m^2/s) = K(m/s)$. d(m)

L'expression de la loi de Darcy, Q = KSi, avec S = d.L: $Q(m^3/s) = T(m^2/s). L(m). i$

Incluant l'épaisseur de l'aquifère, la transmissivité permet de représenter sur des cartes, les zones de productivités. Elle est la base de la discrétisation du calcul par mailles des modèles mathématiques. Elle est mesurée sur le terrain par les pompages d'essai.

3.3.5 Diffusivité

La diffusivité, notée T/S, régit la propagation d'influences dans l'aquifère. Elle est égale au quotient de la transmissivité, T, par le coefficient d'emmagasinement, S. Elle s'exprime en m²/s.

3.4 Débit d'une pappe et vitesse d'écoulement

3.4.1 Débit d'une nappe

Le débit d'une nappe, Q, est le volume d'eau en m³ traversant par unité de temps(s) une section trasversale en m² d'aquifère, sous l'effet d'un gradient hydraulique déterminé. Il est calculé par application des expressions de la loi de Darcy. Ce débit ne doit pas être confondu avec le débit de l'écoulement souterrain.

Le calcul du débit d'une nappe peut se faire par différentes methodes:

- -Méthode de la carte piézométrique
- -Méthode de la section totale
- -Méthode des sections élémentaires.

3.4.2 Vitesse d'écoulement

Hydrodynamique et hydrocinématique souterraines

L'écoulement des eaux souterraines peut être considéré comme le déplacement de particules d'eau, dans l'espace et dans le temps, le long de trajectoires, appelés ligne de flux ou ligne de courant. En général, deux méthodes sont utilisées pour déterminer les vitesses d'écoulement, ces méthodes correspondent à deux conceptions de leur mouvement:

- Application de la loi de Darcy, avec une correction introduia sant la porosité efficace, calculant la vitesse effective, notée Ve. C'est le concept d'hydrodynamique souterraine
- Opération de traçages sur le terrain, mesurant la vitesse de déplacement, notée Vd. C'est le concept de l'hydrocinématique souterraine.

3.4.2.1 Vitesse de filtration et vitesse effective. Hydrodynamique souterraine

L'hydrodynamique souterraine, dont la base est la loi de Darcy,

considère que l'écoulement à travers un milieu, homogène et continu, s'effectue selon des trajectoires théoriques rectilignes, indépendantes de la structure microscopique du réservoir. Le trajet de la droite moyenne (ligne de courant) passe indifferement, à travers les grains ou les pores. C'est pourquoi la loi de Darcy n'est valable que pour une certaine grandeur de milieu, comprenant un nombre suffisant de pores, donc d'échelle macroscopique.

La vitesse de filtration, V, calculée par la loi de Darcy, se rapporte à la section totale S. Elle n'a pas de réalité physique. Par exemple, pour un débit d'une nappe, $Q = lm^3/s$, traversant une section totale, $S = 200.000m^2$:

vitesse de filtration =
$$Q = \frac{1}{200.000}$$
 = 5.10⁻⁶ m/s = 150m/an
S 200.000

Mais seule l'eau gravitaire, se déplace. La surface officace d'écoulement ainsi réduite aux vides ménagés par le corps solide (grains + eau de rétention), dépend de la porosité efficace ne. Elle est égale à Sne. L'expression de la loi de Darcy, corrigée, rapportée à la section efficace, pour le calcul de la vitesse effective, Ve est donc:

vitesse effective, Ve =
$$\underline{\mathbf{v}} = \underline{\mathbf{K}} \cdot \underline{\mathbf{1}}$$

dans l'exemple précedent, avec ne = 10%

Vitesse effective, Ve =
$$\frac{1}{20.000}$$
 = 5.10⁻⁵ m/s = 1500m/an

La vitesse effective est reliée à la vitesse de filtration par l'expression:

$$Ve = V$$

La section efficace est plus petite que la section totale. Donc à débit d'une nappe constant, la vitesse effective est plus grande (de l'ordre de dix fois) que la vitesse de filtration. Elle se rapproche de la vitesse de déplacement, mesurée sur le terrain.

3.4.2.2 Vitesse de déplacement. Hydrocinématique souterraine. Dispersion.

L'hydrocinématique, branche de la cinématique, considère les déplacements réels des particules d'eau dans les vides continus. Elle étudie les trajectoires réelles dans les vides du milieu à l'échelle microscopique. Elle introduit le concept de dispersion.

3.4.2.2.1 Mise en évidence de la dispersion. Traçage.

L'expérience de Darcy est effectuée sur une colonne de sable, verticale, en introduisant au sommet de l'appareil, un traceur à une concentration Co (poids de traceur par unité de volume de solution). Un traceur est une substance solidaire de la molécule d'eau permettant de l'identifier (de la marquer) et de la suivre dans son déplacement. Le traceur peut être présent naturellement ou ajouté.

D'où deux types de traceurs, naturels et artificiels. L'opération appelée traçage, permet de mesurer, sur le terrain, la <u>vitesse de déplacement</u>, la direction réelle de l'écoulement et les paramètres de la dipersion.

Deux méthodes d'introduction du traceur sont utilisées: injection massive, ou bouffée, de courte durée en continue à concentration constante de longue durée

La concentration, C, est mesurée en bas de la colonne, à des intervalles de temps échelonnés ou en continu, par des enregistreurs automatiques. Le temps écoulé entre l'introduction du traceur et sa détection à la sortie, est appelé temps de séjour.

Les données obtenues sont portées sur un graphique. En ordonnées les rapports des concentrations C/Co. En abscisses les temps de séjour. La courbe obtenue est la courbe de restitution du traceur. Elle détermine les temps de séjour et la vitesse de déplacement

3.4.2.2.2 La dispersion

La courbe de restitution montre que les particules de traceur,

•	•		

donc les particules d'eau, injectées à un instant donné, au point de départ, n'arrivent pas simultanément en bas de colonne. A la sortie, elles sont étalées dans le temps et dans un volume plus ou moins grand. Ce fait n'est pas conforme à la loi de Darcy. Ce phénomène est appelé la dispersion.

La dispersion est due à trois (03) groupes de facteurs:

- -La structure physique du réservoir
- -La structure du fluide dont l'agitation thermique des molécules provoque la diffusion moléculaire
- -Les interactions eau/roche à l'origine de l'absorption et de la desorption.

3.5 Détermination de la vitesse de déplacement sur le terrain

L'étude de l'écoulement de l'eau souterraine, véhicule de transport de toutes substances minérales ou organiques, nécessaire pour la prévention contre la pollution de l'espace souterrain doit considérer les trajectoires réelles. D'où la mise en place des méthodes de mesures sur le terrain, des vitesses de déplacement et des paramètres de la dispersion. Elles reposent sur la technique des traçages.

3.5.1 Porosité cinématique

C'est le rapport de la vitesse de déplacement à la vitesse de filtration. Il équivaut au rapport du volume des vides réellement parcouru par l'eau gravitaire au volume total du milieu (saturé ou non). C'est la teneur en eau mobile. Ce concept est proche de la porosité efficace, defini comme un rapport de volumes.

Ainsi pour l'étude pratique de l'écoulement de l'eau souterraine, deux méthodes seront utilisées selon le but poursuivi:

- -L'hydrodynamique pour le calcul des transports de quantités d'eau (débit d'une nappe) ou les transmissions de differences de charge ou de pression (vitesse effective et diffusivité);
- -L'hydrocinématique pour le calcul des transports de substances, base de l'étude de la pollution des eaux souterraines (vitesse de déplacement et dispersion).

,	•		
		·	
			!
	•		
			İ

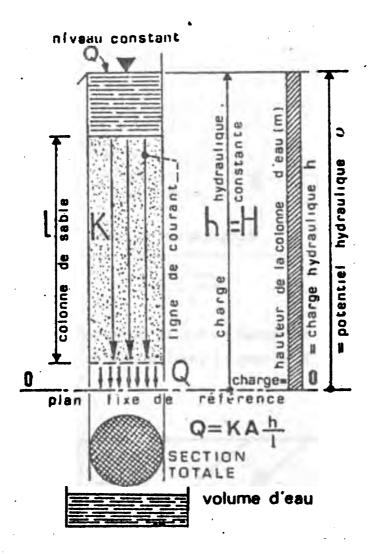


Fig. III-l Expérience de Darcy. Schéma du dispositif expérimental.

La vitesse de filtration est calculée avec la section totale intérieure du tube.

.

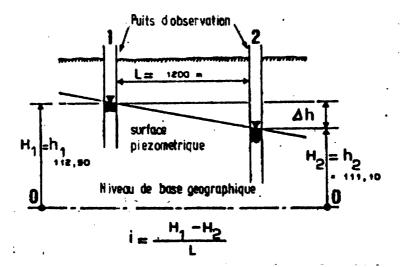


Fig. III-2 Application de la loi de Darcy sur le terrain. Calcul du gradient hydraulique, i, avec deux puits d'observation, l et 2.

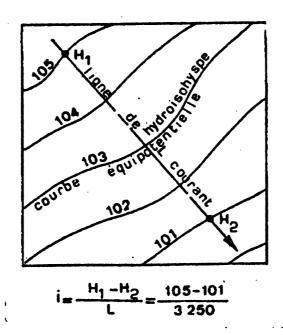


Figure III-3 Calcul du gradient hydraulique par la carte piézométrique.

			:
			:
·			

QUATRIEME PARTIE

ESSAI DE PUITS ET POMPAGES D'ESSAIS

Les expérimentations par pompage à débit constant sur les puits et sondages sont exécutées par des essais de puits et des pompages d'essais. Elles consistent à mesurer l'accroissement des rabattements du niveau piézométrique en relation avec le temps de pompage et leur remontée après arrêt de l'opération.

Les interprétations sont effectuées par résolution graphique des expres - sions d'hydrodynamique souterraine en régime transitoire.

Les essais de puits par paliers de débit, suivis d'arrêts de durée égale et courtes, évoluent les caractéristiques du complexe aquifère/ouvrage de captage. Ce sont le débit spécifique, les pertes de charge et la productivité.

Les pompages d'essais, de longue durée, mesurant la transmissivité et le coefficient d'emmagasinement et étudient qualitativement les caractéristiques particulières de l'aquifère comme les conditions aux limites, les hétérogénéités et la drainance.

4.1 Equipment Technique des Puits et Sondages

L'équipement technique d'un sondage comporte deux éléments essentiels: la colonne ascensionnelle et la partie captante (Figure IV-1).

La colonne ascensionnelle, constituée d'un tube unique ou d'élément télécoscopique, soutient la paroi du trou. L'espace annulaire, entre le tubage et le terrain, est obstrué par une colonne de ciment. Son diamètre est calculé pour le logement de la pompe et en vue de limiter la perte de charge quadratique. · 1 ... La partie captante comporte une crépine et, éventuellement, un massif filtrant. La crépine est un tube perforé d'ouvertures de formes diverses, à travers lesquelles l'eau pénètre dans le sondage. Dans les terrains meubles, l'espace annulaire entre la crépine et le terrain est rempli de gravier calibré.

L'ensemble, partie captante et aquifère au voisinage immédiat du sondage, constitue un complexe aquifère/ouvrage de captage.

La principale est la mise en place du massif filtrant, surtout dans les roches meubles à granulométrie fine. Deux procédés sont pratiqués : le développement naturel par pistonnage ou l'introduction artificialle de gravier calibré.

Un puits comporte également deux parties : le cuvelage en maçonnerie ou en béton et la partie captante dont les ouvertures sont les barbacanes. Ils sont souvent en éléments préfabriqués.

4.2 <u>Définitions</u> et Concepts de Base

Les expérimentations sur le terrain; par des puits et sondages, sont des tests portant sur les modifications du comportement hydrodynamique du complexe aquifère/ouvrage de captage, en réponse à une impulsion crée par un pompage à débit constant. Leur exécution doit être conduite avec la même rigueur scientifique qu'une expérience de physique.

Les pompages d'essais poursuivent quatre buts, dans l'ordre croissant de complexité :

- Détermination des caractéristiques du complexe aquifère/ouvrage de captage. C'est l'essai de puits, destiné à l'équipement technique de l'ouvrage.
- Mesure sur le terrain des paramètres hydrodynamiques de l'aquifère: transmissivité et coefficient d'emmagasinement.

.

• ·.·

4.4

.

- Etude quantitative des caractéristiques particulières de l'aquifère test des conditions aux limites, structures, hétérogénéité, drainage, etc...
- Observation directe, en (vraie grandeur) de l'effet de l'exploitation sur l'aquifère. Prévisions de l'évolution des rabattements en fonction des débits pompés. Evaluation de la ressource en eau souterraine exploitable.
- Les trois dernières opérations sont conduites par le pompage d'essai sur station de pompage comportant au moins un piézomètre.

4.2.1 Effets du pompage sur l'Aquifère, Cône de Dépression

Le pompage dans un aquifère, dont la surface piézométrique initiale est supposée horizontale, crée une dépression en forme d'entonnoir. Son axe coincide avec celui de l'ouvrage. C'est le cône de dépression (figure IV.2). Dans l'aquifère à nappe libre, il affecte le réservoir tandis qu'il est fictif dans celui à nappe captive (Figure IV.3).

L'expérimentation a pour but de mesurer, à débit constant, les dimensions de ce cône à un instant donné et leur évolution dans le temps. Elle porte également sur son effacement après arrêt du pompage, appelé remontée.

4.2.2 <u>Géométrie du Cône de Dépression - Rabattement et Rayon d'Influence</u>

La géométrie du cône de dépression est étudiée dans un aquifère à nappe libre (Figure IV-2) et dans un aquifère à mappe captive (figure IV-3). Le cône de dépression est délimité par le domaine où la surface piézométrique est influencée, c'est-à-dire, affectée de rabattements mesurables.

Il caractérise un écoulement à trois dimensions représenté en coupe et en plan (Figures IV-2 et IV-3).

• ٠. • •

Les deux données géométriques du cône de dépression, à un instant donné, t, sont :

- Le rabattement, noté s, mesuré par l'abaissement du niveau piézométrique dans le puits de pompage ou dans un piézomètre im planté à une distance, r de l'axe de l'ouvrage. Le plan d'eau
 est le niveau dynamique. La profondeur du niveau dynamique, audessous du niveau piézométrique initial, en régime non influencé
 est le rabattement s. Le rabattement mesuré au cours de la remontée, est appelé rabattement résiduel, sr.
- Le rayon d'influence note R, est la distance de l'eau du puits à laquelle le rabattement est nul ou négligeable.

4.2.3 , Facteurs de la Géométrie du Cône de Dépression :

A débit constant les trois facteurs des dimensions du cône de dépressions sont : les paramètres hydrodynamiques (transmissivité et coefficient d'emmagasinement), le temps de pompage et le régime d'écoulement.

Rôle de la Transmissivité et du Coefficient d'Emmagasinement

Le rayon d'influence est fonction directe de la transmissivité et indirecte du coefficient d'emmagasinement.

Ainsi, dans deux stations de pompage d'essai, après le même temps de pompage, R = 5000 m et s = 6.70 m pour une transmissivité T = 1,50. $10^{-3} \, \text{m}^2$ /s et R = 12.200 m avec s = 0,76 m pour $T = 1.5 \, 10^{-2} \, \text{m}^2$ /s, soit dix fois plus grande. Il en résulte que ces deux paramètres peuvent être mesurés par des expérimentations sur le terrain.

Rôle du Temps de Pompage

Les deux dimensions du cône de dépression croissent avec le temps de

pompage. Toutefois, après une longue durée, une stabilisation peut faire apparaître l'aquifère rééquilibrant son bilan (régime quasipermanent).

Régime d'Ecoulement

A débit constant, deux concepts du régime d'écoulement de l'eau souterraine vers un ouvrage de captage, sont considérés par référence à l'influence du temps de pompage.

Le régime parmanent ou d'équilibre pour lequel, après un temps de pompage court (ordre) d'une heure, la géométrie du cône de dépression reste constante; c'est l'hypothèse de H. Dupuit (1963). C'est en quelque sorte un instantané, un flash, du comportement hydrodynamique de l'aquifère; le régime transitoire ou de non équilibre, tenant compte du fait observé que les dimensions du cône de dépression croissent en fonction du temps de pompage. C'est la base des expressions de C.V. Theis (1936) et de C.E Jacob (1950). Par comparaison avec le régime permanent, il s'agit d'un dessin animé de l'évolution du comportement hydrodynamique de l'aquifère.

Le régime permanent rigoureux n'existe pas, sauf dans ces conditions exceptionnelles. Dans la réalité, il est possible d'admettre l'apparition d'un régime quasi-permanent.

4.2.4 <u>Méthodes d'Expérimentation par Pompage</u>:

Le régime permanent n'existe pas dans les conditions naturelales d'écoulement. C'est pourquoi, les expérimentations sont actuellement effectuées en régime transitoire. Deux méthodes d'expérimentation et d'interprétation sont préconisées en relation avec le but poursuivi.

 Essai de puits par paliers de débit de courtes durées avec mesure du niveau d'eau dans le puits (niveau dynamique.

•

Détermination des caractéristiques du complexe aquifère/ouvrage de captage dans le but de l'équipement technique ou complétion, du sondage ou du puits.

- Pompage d'essai à un seul palier de débit de longue durée avec mesure des niveaux d'eau dans le puits et dans un (ou plusieurs) piézomètres. Détermination des caractéristiques de l'aquifère : paramètres hydrodynamiques, test des conditions aux limites, drainance.

Dans tous les cas l'identification du type hydrodynamique d'aquifère est nécessaire aux interprétations.

4.3 Essai de Puits par Paliers de Débit de Courtes Durées :

L'essai de puits par paliers de débit de courtes durées évalue les caractéristiques du complexe aquifère/ouvrage de captage. Ce sont: le débit critique, le débit spécifique, le débit spécifique relatif, les pertes de charge dans l'ouvrage et son environnement immédiat et le débit maximum d'exploitation ou productivité (E. Berkaloff, 1969 et J. Forkasiewicz, 1978). Il permet d'établir le programme d'équipement technique de l'ouvrage: tubage, crépine et massif filtrant, puissance de la pompe, etc...

4.3.1 Conditions de Base

Les conditions de base d'application des expressions d'hydrodynamique souterraine en régime transitoire, auxquelles doit satisfaire le complexe aquifère/ouvrage de captate sont :

- a) Validité de la loi de Darcy: écoulement laminaire et milieu isotrope ou homogène;
- b) Puits complet, c'est-à-dire, captant toute l'épaisseur de l'aquifère, atteignant le substratum et crépine sur toute sa hauteur (Figure IV.2).

- c) Puits correctement développé et équipé;
- d) Surface piézométrique subhorizontale;
- e) Débit de pompage constant;
- f) Rayon de puits le plus petit possible.

4.3.2 Exécution de l'essai de puits - Paliers de Débit

L'essai de puits est effectué en réalisant des paliers, à débit constant pendant une courte durée déterminée, 1 à 3 histories Tableau IV et figure IV-4. Il mesure deux données : le rabattement en mètres, mesuré en fin de palier et le débit cons tant, en m³/h. Chaque palier de débit est suivi d'un arrêt de pompage d'une durée égale, permettant la remontée du niveau d'eau et la mesure du rabattement résiduel (Figure IV -5. La première remontée doit être égale; permettant la remontée du niveau d'eau et la mesure du rabattement résiduel jusqu'à atteindre approximativement le niveau piézométrique initial. En général, le temps de pompage du premier palier est suffisant. Les durées égales de pompage et d'arrêts sont courtes, une à 3 heures au maximum. Le débit initial est égal à celui de la puissance minimum de la pompe. Ensuite, les débits croissent selon une progression de 2, 3, 4 le nombre jusqu'à un optimum de six. Pour les aquifères à nappe captive, 3 paliers de débit peuvent être suffisants. Il doit être supérieur pour les aquifères à nappe libre.

Lors de la mise en route du pompage, les premiers volumes d'eau exhaurés correspondent à la vidange de l'ouvrage, donc à un écoulement quadratique non linéaire. L'aquifère n'est sollicité qu'après un certain délai. C'est l'effet de capacité du puits (M. Bonnet et al...., 1967).

,

Tableau IV-1 Essai de puits par palièrs de débit de courtes durées dans un sondage captant l'aquifère à nappe libre de la craie. d'après J. Forkasiewicz (1978).

Paliers		Débits	Rabattements	Débits	Rabattements
de	débit	pompés m3√h .	résiduels m	spécifiques m3/h.m	spécifiques s/Q m/m3.h
	1	42	0,81	51,85	0,0156
, `	2	87	2,01	45	0,0231
•	3	132	3,53	37 4 4	0,0268
!	4	178	6,47	27,5	0,0364
			•	•	•

L'exécution du premier palier de débit doit être précédée d'une durée de pompage, tc, suffisante pour l'effacer. Elle est fonction de la transmissivité T, de l'aquifère et du volume d'eau contenue dans l'ouvrage; donc de son rayon r (tc = 25 r^2 /T. Lorsque la transmissivité n'est pas connue, le volume d'eau minimum extrait sera de 10 r^2 s, Berkaloff, 1968).

4.3.3 <u>Signification du Rabattement dans les Ouvrages - Pertes de Charge</u>:

Le rabattement, mesuré dans l'ouvrage à un instant t, est la somme de deux composantes, nommées pertes de charge, exprimées en mètres de hauteur d'eau, caractérisant le complexe aquifère/ouvrage de captage (Figure IV-1).

- Une perte de charge linéaire provoquée par l'écoulement laminaire dans l'aquifère au voisinage du puits (loi de Darcy), notée BQ.
- Une perte de charge quadratique, non linéaire, provoquée par l'écoulement turbulent dans l'ouvrage, crépine et tubage, notée CQ2.

•			
·			
·			

Le rabattement total, s, à l'instant t, est ainsi donné par l'expression de C.E. Jacob (1946):

s = B0 + CQ2.

Cette expression, la plus utilisée, établie pour l'aquifère à nappe captive, est étendu à l'aquifère à nappe libre sous condition que le rabattement mesuré soit inférieur à 0,1 b.

4.3.4 <u>Vitesse Critique et Débit Critique dans l'Aquifère à Nappe</u> Libre

Au cours du pompage le niveau dynamique dans le puits est inférieur au niveau piézométrique dans l'aquifère au voisinage de l'ouvrage. Cette différence est la hauteur de la surface de suintement, notée h' (Figure IV-5). Elle croît avec le rabattement pour atteindre une valeur maximale lorsque le rabattement dans l'aquifère est voisin de b/2. Au-delà , les rabattements, croissants dans le puits, n'entrainent plus ceux dans l'aquifère au voisinage de l'ouvrage. Ils le stabilisent et le débit ne croit plus en fonction du rabattement, seul le rayon d'influence augmente. Le puits est dénoyé; jusqu'à cette limite la courbe de dépression se creuse et le gradient hydraulique, au voisinage de l'ouvrage augmente pour atteindre un maximum (Figure IV-5). D'après la loi de Darcy, la vitesse effective croit. Au-delà d'une certaine limite, l'écoulement laminaire fait place à un écoulement turbulent. La vitesse critique est atteinte. Elle correspond à un débit critique, Qc. Le régime turbulent augmente la perte de charge quadratique, donc diminue le rendement de l'ouvrage. En outre, il provoque l'entrainement des particules fines du terrain, d'où colmatage de la partie captante et ensablement du puits. Dans la pratique, le débit de pompage doit être inférieur au débit critique. Le débit critique est évalué par l'interprétation de la courbe débits/rabattements.

4.3.5 Interprétation graphique des données de l'essai de puits

4.3.5.1 Relations débits/temps et Rabattements/Temps

Sur un papier à coordonnées linéaires sont portés, en oordonnées les débits ou les rabattements et les temps en abscisses. Deux graphiques sont obtanues (Figure IV-4).

- Graphiques débits/temps de pompage, figurant les durées et les débits des paliers de débits, les durées et les arrêts de remontée (en haut de la figure IV-4)
- Courbe rabattements/temps de pompage et rabattements résiduels/temps de remontée.

Ces graphiques permettent de contrôler le bon déroulement de l'expérimentation d'essais de puits.

4.3.5.2 Courbe débits/Rabattements - Débit Critique

Le couple de données de chaque palier de débit, débit constant, en m3/h et rabattement résiduel en m, est porté sur un papier linéaire. Les points obtenus tracent la courbe débits/rabattements ou courbe caractéristique, représentant la fonction s = f (Q), Figure IV-6.

La forme de la figure IV-6, apporte des informations sur le comportement hydrodynamique du complexe aquifère/ouvrage de captage à l'origine de la perte de charge quadratique (figures IV-6 et IV-7) : nulle ou négigeable avec une droite, importante avec une courbe convexe. Une courbe concave traduit un essai de puits non valable : mesure incorrecte ou apparition d'un développement au cours du pompage.

,			
•			
	·		

La courbe débits/rabattements présente deux parties distinguées par le point critique, a, correspondant en abscisse au débit critique Qc (140 m3/h., figure EV -6.

Sa valeur, significative à la date de l'essai, correspond à un état instantané de l'aquifère, position de la surface piézométrique en particulier. Il ne peut donc être utilisé pour des prévisions d'exploitations valables.

La courbe caractéristique est un document fondamental. Réalisée lors de la réception du puits elle est une véritable fiche d'identification qui doit figurer obligatoirement au dossier de l'ouvrage. Elle sera utilisée ultérieurement, pour détecter les améliorations (développement) ou les détériorations (colmatage), suites à l'exploitation de l'ouvrage (vieillissement). Elle détermine le débit maximum d'exploitation, fonction d'un rabattement maximum admissible (figure IV-7).

-4.3.6 <u>Calcul des pertes de charge</u>

La droite débits/rabattements specifiques, permet de déterminer les coefficients B et C de l'équation s/Q = B + CQ (Figure IV-8).

- Le coefficient B est obtenu par l'intersection de la droite représentative avec l'axe des rabattements spécifiques. Dans l'exemple retenu, B = 0,01 = 10⁻².
- Le coefficient C est égal à la pente de la droite représentative.:

$$C = tg\alpha = \frac{a}{b} = \frac{0.014}{100} = 1.4.10^{-4}$$

L'équation de la droite représentative est :

$$s = 1.10^{-2} Q + 1,4 10^{-4} Q^2$$

Le rabattement correspondant à chaque palier de débit est calculé par cette expression. Les valeurs obtenues, portées sur le graphique débits/rabattements, se superposent par - faitement à la courbe observée (Figure IV-6). L'essai de puits est correct.

4.3.7 <u>Détermination de la productivité d'un puits. - Débit d'ex-</u> ploitation maximum :

La productivité d'un puits, Pr, est le débit maximum qui peut être pompé dans l'ouvrage, pendant une durée définie, sans que le rabattement induit par le pompage ne dépasse le rabattement maximum admissible (J. F. Forkasiewicz 1978).

Le rabattement maximum admissible est imposé par :

- Des contraintes physiques et techniques du complexe aquifère/ouvrage de captage, exprimées par le débit critique,
 (Qc) et le rabattement critique (sc), correspondant, me surés par les essais de puits (Figure IV-6). Par exem ple Figure IV-6 Qc = 140 m3/h et sc = 4m Le débit maxi
 mum (Q max) et le rabattement, doivent être inférieurs,
 soit Q max = 130 m3/h et s max = 3,50 m.
- Des contraintes socio-économiques, dont la principale est le coût de production de l'eau, imposant la profondeur du niveau dynamique. Par exemple, 5 mètres, figure IV-6.

Le rabattement maximum retenu doit donc être égal au rabattement maximum mesuré, sans dépasser le rabattement maximum

	•				
			·		

admissible. Dans l'exemple cité, il sera de 4 mètres :

$$Pr = qs \times s \max = Q \max$$
 (46)

A noter que le débit d'exploitation maximum peut être supérieur au débit critique car il est possible d'admettre une perte de charge quadratique à condition qu'elle ne soit pas trop élevée par rapport à la perte de charge linéaire, Exemple : 5m, figure IV-6. Dans la pratique, il est fonction de l'épaisseur de l'aquifère à nappe libre (s max ; b/3) et de la hauteur d'eau avant pompage h, dans l'ouvrage en aquifère à nappe captive (s max = 0.75 h)

4.4 Pompages d'Essais de Longue Durée

Les pompages d'essai de longue durée sont exécutés par un seul palier de débit, à débit constant, prolongé durant au moins 24 hres, avec un optimum de 72 heures. La remontée des niveaux doit être observée pendant une durée égale (Figure IV-9). L'exécution et l'interprétation des données mesurées, rabattements et temps, reposant sur l'emploi des expressions d'hydrodynamique en régime transitoire, établies par C.V. Theis (1935) et ses successeurs L.K. Ewmzel, 1942 et C. E. Jacob, 1950).

4.4.1 But du Pompage d'Essai

Le pompage d'essai poursuit trois buts principaux :

- Mesure sur le terrain des paramètres hydrodynamiques : transmissivité et coefficient d'emmagasinement;
- Etude quantitative des caractéristiques particulieres de l'aquifère: conditions aux limites (confirmation de la distance du puits à la limite, colmatage des berges d'une rivière), structure (hétérogénéité, drainance);

			٠,

- Observation directe, en (vraie grandeur) de l'effet de l'exploitation sur l'aquifère. Prévision de l'évolution du rabattement en fonction des débits pompés. Evalua - tion de la ressource en eau souterraine exploitable.

Le pompage d'essai, intéressant un volume d'aquifère impor - tant, est un test valable de son comportement hydrodynamique.

4.4.2 Expressions d'hydrodynamiques souterraines du régime transitoire :

Partant d'une conception du comportement hydrodynamique de l'aquifère, C.V. Theis établit les expressions de l'écoule - ment de l'eau souterraine vers les ouvrages de captage, dites en régime transitoire.

L'expression générale de Theis est :

$$s == \frac{Q}{4)(T} \qquad \int_{U}^{\infty} \frac{e^{-u}}{u} \frac{du}{u}$$

$$u = \frac{r^{2}}{4T} \frac{s}{t}$$

L'expression d'approximation logarithmique donnée par Jacob est

$$s = 0.123 \quad \frac{Q}{T} \quad \log \quad \frac{2.75 \text{ T t.}}{r^2 \quad 5}$$

Où: s = Rabattement mesuré dans un piézomètre, en m.

Q = Débit de pompage, en m³/s

T = Transmissivité, en m²/s

t = Temps écoulé, à un instant donné, depuis le début des pompages, en secondes

r = Distance du piézomètre à l'axe du puits, en m.

S = Coefficient d'enmagasinement

•	,			

sp, est le rabattement résiduel mesuré à un instant donné pendant la remontée, en m.

- t, Le temps écoulé depuis le début du pompage, en secondes
- t', Le temps écoulé depuis l'arrêt du pompage (temps de remontée)

 Le rayon fictif, Rf, est la distance à laquelle le rabattement,
 calculé par l'expression de C.E. Jacob est nul. Il est fonction
 de la transmissivité et du coefficient d'emmagasinement. Fait
 qui confirme l'étude sur les facteurs des dimensions du cône de
 dépression. Il répond donc à :

$$s_p = \frac{0.183 \text{ Q}}{1} + \log \frac{2.25 \text{ Tt'}}{r^2 \text{ S}} = 0$$

d'où: Rf = 1,5
$$\frac{\text{Tt}}{\text{S}}$$

4.4.3 Interprétation graphique des Pompages d'Essai

La résolution des expressions d'approximation logarithmique de C.E Jacob est obtenue par le tracé et l'interprétation de la droite représentative rabattements/logarithmes des temps de pompage ou rabattements résiduels/logarithmes des temps de remontée.

4.4.3.1 Relations entre les rabattements et les temps Droite Représentative

Dans les expressions d'approximation logarithmique de C.E Jacob le premier terme est une constante, Q et T étant constants. Dans le second terme, seul le temps varie. Les rabattements croissent en fonction du logarithme du temps de pompage. Cette condition est conforme au concept de régime transitoire.

Les données du pompage sont reportées sur un papier semi-logarithmique (Figure IV-10). Les rabattements ou les profondeurs du niveau
d'eau exprimés en m, de haut en bas, en ordonnées linéaires et les
temps de pompage en abscisses logarithmiques. Le niveau piézométrique initial est indiqué en haut du graphique. Les échelles sont
choisies, dans chaque cas, en particulier celles des temps (secondes, minutes, heures), afin d'utiliser tout l'espace du graphique.
Les points obtenus tracent la droite moyenne représentative de l'expression de C. E. Jacob. La courbe observée, au début du pompage,
traduit l'effet de capacité de l'ouvrage, provoquant un écoulement
turbulent non linéaire. Le point d'intersection de la droite représentative avec le niveau piézométrique initial, mesure le temps fictif à l'origine, noté ta

Dans les tableaux IV-2 et IV-3, on montre les résultats de pompage d'essai dans l'aquifère à nappe captive illimité des sables albiens du bassin de Paris à Ivry-syr-Seine d'après J. Forkasiewicz, 1972.

4.4.3.2 Calcul des Paramètres Hydrodynamiques

La transmissivité est calculée par la pente de la droite représentative. L'échelle des coordonnées n'étant pas homogène, la pente est déterminée par l'accroissement des rabattements (ou des profondeurs des niveaux d'eau au cours d'un module logarithmique, noté c. La transmissivité est calculée par l'expression :

$$T = \frac{0,183 Q}{c}$$

Le coefficient d'emmagasinement est obtenu par calcul numérique dans le deuxième terme de l'expression de Jacob; ou, plus simplement, avec t_0 lorsqu'il peut être déterminé par l'expression : $S = \frac{2.25 \text{ T}}{2.25 \text{ T}}$

Tableau IV-2 Pompage d'essai à Ivry-sur-Seine (Région parisienne).
Données obtenues par l'expérimentation de pompage.
Descente. Débit constant : 200 m³/h. 25 au 18.10.66.

	HORAII	RE	PROFOND	EURS m		HORAIRE	-	PROFOND	EURS. m
	Heures et Min.	Temps t Heures	Sondage	Piézo- mètre		Heures et Min.	Temps t Heures	Sondage	Piézo- mètre
25	15 15.01 15.02 15.03 15.04 15.06 15.08 15.10 15.12 15.15 15.18 15.24 15.30 15.40 16.20 16.50 17.20 18	0. 0.017 0.033 0.05 0.07 0.10 0.13 0.17 0.20 0.25 0.30 0.40 0.50 0.67 0.83 1. 1.33 1.84 2.34 3	8.62 25 27.10 27.24 27.23 27.23 40.27 42.25 42.80	8.08 8.10 8.13 8.27 8.56 9.33 9.94 10.42 10.80 11.29 11.66 12.21 12.66 13.23 13.77 14.17 14.83 15.59 16.17 16.80 17.70	25 26 27 28	20 21 22 24 2 6 10 16 22 4 12 20 4 12 14 14.15	5 6 7 9 11 15 19 25 31 37 45 53 61 69 71 71.15	43.00 43.30 43.70 44.90 45.10 45.50 46.80 47.70 47.60 47.60 47.90 49.70	18.00 18.50 18.95 19.63 20.10 20.90 21.35 22.70 22.97 23.45 24.20 24.90 24.80 24.85

Arrêt du pompage

Durée: 71.15 heures

Rabattements en fin de pompage

- Sondage : 41.08 m - Piézomètre : 16.77 m

Tableau IV-3 Pompage d'essai à Ivry-sur-Seine (Région parisienne)
Données obtenues par l'expérimentation de pompage.
Remontée après arrêt du pompage 28 au 31.10.65.

·	HORA	IRE	t + t'	PROFONDE	JRS mm
	Heures et Minutes	Temps, t¹ Heures	t' .	Sondage	Piézomètre
28	14.15	0	0.	49.43	24.85
	16	0.017	4.2. 10 ³	27.90	24.85
\	17	0.033	2.17.103		24.51
1: 1	18	0.050	1.42.103	ļ	24.13
	19	0.067	1.02.103	23.72	23.78
	21	0.1	7.1. 10^{2}	22.72	23.16
1'	23	0.13	5.5. 10^{2}	22.00	22.66
	25	0.17	$4.2. 10^{2}$	21.68	22.30
j i	27	0.20	$3.6. 10^{2}$	21.28	21.95
1 1	14.30	0.25	$2.9. 10^{2}$	20.81	21.91
1		0.3	$2.4. 10^{2}$	20.16	21.90
1		0.4	$1.8. 10^{2}$	19.57	20.76
		0.5	$1.4. 10^{2}$	19.07	20.18
		0.67	1.1. 10^{2}	18.42	19.68
		0.83	8.7. 10^{1}_{1}	18.03	19.08
1 1	15.15	1	7.2. 10^{1}_{1}	17.63	18.68
		1.33	$5.5. 10^{1}$	16.90	18.02
		1.84	4.0. 101	16.20	17.23
1 1	17	2.75	$2.7. 10^{+}_{1}$		16.27
	18	3.75	$2.0.10^{1}$	14.20	15.50
	20	5.75	1.34.10	13.70	14.45
1	22	7.75	1.02.10	13.20	14.20
29	24	9.75	8.3	12.75	13.20
29	` 2 4	11.75	7.1 6.2	12.25 11.88	12.60 12.15
1 1	8	13.75		11.83	11.79
1 1	14	17.75 23.75	5 4.	11.65	11.10
1	18	27.75	3.6	10.96	10.80
30	.6	39.75	2.8	10.15	10.15
~	14	47.75	2.5	9.90	9.90
1 1	22	55.75	2.3	9.85	9.50
31	6	63.75	2.1	9.55	9.25
	14	71.75	2.0	9.58	9.25
				. 130	

Elle ne peut être observée que sur un piézomètre.

L'étude de cas concrets portera donc, successivement sur :

- Aquifère à nappe captive illimité: Ivry-sur-Seine en région parisienne
- Aquifère à nappe quasi captive de la Plaine du Cul-de-Sac

Aquifère à nappe captive illimité : pompage d'Essai à Ivry-sur-Seine

Un pompage d'essai a été réalisé dans l'aquifère à nappe captive des sables albiens, à Ivry-sur-Seine, en région parisienne (J. Forkasiewick 1972.

Cadre Hydrogéologique et données du pompage d'essai

Le sondage capte toute l'épaisseur de l'aquifère à nappe captive, entre 540 et 600 m de profondeur. C'est un ouvrage parfait. Les limites latérales de l'aquifère se situant à plus de 100 km de distance. Il est donc d'extension latérale illimitée. Le toit et le substratum sont constitués par des formations hydrogéologiques imperméables.

La durée du pompage a été de 71 heures à débit constant, Q = 200 m³/h= 0,055 m³/s. Un ancien forage, situé à 100 m du sondage d'essai a été utilisé comme piézomètre. Le rabattement total est de 41 m dans le sondage et de 17 m dans le piézomètre. La remontée des niveaux, après arrêt du pompage, a été observé pendant 71 heures. Les résultats des essais sont donnés dans les tableaux IV-2 et IV-c.

Interprétation des données du pompage d'essai

Les données du tableau IV-3, profondeurs de l'eau en m et temps de pompage en heures, reportés sur un papier graphique semi-logarithmique, ont permis de tracer la droite représentative du pompage

		•

d'essai (Fig. IV-10). Le temps To, de 0.09 heures (324 secondes) et la pente de la droite c = 5.8 m, aboutissent au calcul de la transmissivité T et du coefficient d'emmagasinement, S.

$$T = \frac{0.183 \text{ Q}}{c} = \frac{0.183 \times 0.055}{5.8} = 1.7.10^{-3} \text{ m}^2/\text{s}$$

$$S = \frac{2,25 \text{ Tto}}{\chi^2} = \frac{2,25 \times 1,7.10^{-3} \times 324}{(110)^2} = 10^{-4}$$

Interprétation des données de la remontée des niveaux

Les données du tableau IV-2, profondeurs et valeurs de (t + t')/t', donnent une droite représentative. Elle permet de calculer la transmissivété, avec c = 5.8 m.

$$T = \frac{0.183 \text{ Q}}{c} = \frac{0.183 \times 0.055}{5.8} = 1.7 \cdot 10^{-3} \text{ m}^2/\text{s}$$

Débit constant et durée de pompage

Le débit de pompage, constant, doit satisfaire deux conditions : être le plus élevé possible, tout en restant compatible avec le rabattement maximum admissible jusqu'à la fin de l'essai et pouvoir être maintenu avec une tolérance de 5% pendant toute sa durée. Un essai de puits doit donc précéder le pompage d'essai. Pour les aquifères à nappe libre, respecter la condition de rabattement final < 0,1 d.

La durée du pompage tp doit être assez longue pour dépasser l'effet de capacité du puits et permettre l'application de l'expression de C.E. Jacob. Elle doit donc dépasser cet effet d'au moins deux cycles logatithmiques. Or, les valeurs approximatives de la durée de cet effet, décroissent avec l'augmentation de la transmissivité (tc = $25 \text{ r}^2/\text{T}$ et tp \rightarrow 20 tc). Avec un rayon du puits classique de $\frac{1}{2}$ m, elle est de 250 hres pour une très faible transmissivité (3.10^{-3} m²/s, de 25 hres.

pour une transmissivité moyenne $(3.10^{-3} \text{ m}^2/\text{s} \text{ et très courte}, 1,30 \text{ mn}$ pour une transmissivité élevée $(3.10^{-2} \text{ m}^2/\text{s})$ Le pompage d'essai n'est donc pas possible dans les deux cas. Son prix de revient serait prohibitif.

Pour le test des conditions aux limites, l'influence se fait sentir au puits de pompage après un temps approximatif, $tp = 0.5 \times 2.5$ x étant la distance de l'axe du puits à la limite. La durée de pompage est alors, $tp = 0.5 \times 2.5$. Il faut éviter de placer le puits trop près d'une limite afin que l'effet de celle-ci ne soit pas trop rapide.

Pompage d'Essai réalisé dans l'aquifère de la Plaine du Cul-de-Sac Projet Rivière Blanche (Rabel 1984)

<u>Généralités</u>

Les courbes seront interprétées par comparaison avec le modèle de Theis (approximation logarithmique de Jacob). Cette méthode est applicable dès que les conditions suivantes sont satisfaisantes.

$$\frac{QP}{Q}$$
 < 10^{-2}

$$u = \frac{r^2s}{4 \text{ lt}} < 10^{-2}$$

L'effet de capacité c'est l'écart entre l'évolution de rabattement déterminé par pompage dans un puits idéal dont le diamètre serait négigeable, et le rabattement observé dans un puits réel dont le diamètre, par conséquent, le volume d'eau contenu dans l'ouvrage ne sont pas négligéable: c'est un effet de retard des rabattements dont la durée dépend des dimensions du puits et des paramètres de l'aquifère.

· :			

Nous avons : Q = Qp + Qn

Q = Débit de la pompe

Qp = Débit lié à la capacité du puits

Qn = Débit entrant dans le puits

 $Qp = \widetilde{\mathcal{H}} \mathbf{r}_p^2 = \frac{\Delta s}{\Delta t}$

rp : Rayon du puits

As: Variation du rabattement

At: Variation du temps

L'effet de capacité pertube l'écoulement tant que :

$$Q_p/Q < 0.01 \text{ où tc} = \frac{25. \text{ r}^2}{T}$$

La relation de Jacob est applicable quand :

$$u = \frac{r^2}{4} \frac{S}{Tt} < 10^{-2}$$

Les paramètres T et S seront calculés à partir des relations suivantes :

T = 0.183
$$\frac{Q}{\Delta}$$
 et S = $\frac{2.25 \text{ T to}}{r^2}$

T : Transmissivité

S : Coefficient d'emmagasinement

A : Variation du rabattement du graphique par cycle logarithmique

Q : Débit de la pompe

r : Distance puits - Piézomètre.

Pompage d'essai sur le forage F4

Généralités

Situation Coordonnées X: 803.2

Y: 2054.1

Forage : F₄ et Piézomètre : P₄

Distane Forage - Piézomètre : 7.5 m.

Cadre Hydrogéologique

Le forage et le piézomètre sont situés au sud du secteur dans les alluvions de la Rivière Blanche. Le terrain est constitué principalement de formations détritiques, c'est une série hétérogène avec de grandes variations latérales et verticales de faciès.

Interprétation (Figure IV-11, IV-12).

Vérification de l'effet de capacité :

Descente

$$10^2 < t < 10^3$$

$$\triangle S = 0.94 \text{ m}$$

$$\triangle T = 900 \text{ secondes}$$

$$\frac{QP}{Q} = \frac{(0.15)^2 \times 0.94}{9 \times 10^2 \times 100 \times 10^{-3}} = \frac{7 \times 10^{-5}}{100 \times 10^{-3}} < 10^{-2}$$

Remontée
$$\Delta s = 0.15 \text{ m}$$

 $\Delta t = 290 \text{ s}$

$$\frac{Qp}{Q} = 0.0036 < 10^{-2}$$

Pas d'effet de capacité

Nature de	Ouvrage et	Temps Considéré				11.211
la courbe	débit	en s	E ve v	en m /s	, ,	n
Courbe descente	Forage F4 q = 100/s	10 ³ - 10 ⁴	0.40	4.5.x 10 ⁻²	:	;
יי יי	Piézomètre P4	103 - 104	0.05	3.6 × 10 ⁻¹	4E - 1	1,4E-S
Courbe remontée	Forage F4	10° - 10 ¹	0.04	4.3 × 10 ⁻¹	ı	1
=		10 ¹ - 10 ²	0.08	2.3 × 10 ⁻¹	ı	ı
:	Piézomètre P4	10° - 10¹	0.04	4.3 × 10 ⁻¹		
=	=	101 - 102	0.09	2.1 × 10 ⁻¹		

֥			
. 4			
• •			
. ,			
	·		

Vérification de la condition de Jacob

$$u = \frac{r^2 S}{4 Tt} < 10^{-2}$$

$$T = 4.5 \times 10^{-1}$$
; $S = 1.4 \times 10^{-5}$; $t = 1.2$ secondes $u < 10^{-2}$

L'interprétation proposée parait cohérente, car les calculs des paramètres obtenus ont été effectués dans des temps satisfaisants aux conditions :

$$\frac{Qp}{Q} < 10^{-2}$$
 et $u = \frac{p^2 - 35}{R \text{ Tt}} < 10^{-2}$

Interprétation de la Courbe

Courbe de Descente

Avec les valeurs de transmitivité obtenues, nous constatons une différence de l'ordre d'une puissance de 10 entre T F_4 et T P_4 sur laddes-cente. Ceci pourrait être dû au fait que F_4 capte trois niveaux aquifères alors que P_4 n'en capte qu'un seul. Comme la T de P_4 apparait plus élevé que celle de F_4 , on peut émettre l'hypothèse suivante :

- Malgré la colonne de graviers (100 m) qui comble la base du piézomètre P₄ les niveaux inférieurs continuent à alimenter P₄, mais avec des pertes de charges énormes, ce qui pour un temps de pompage relativement court peut réduire le rabattement; ce qui donne pour un même temps une pente plus faible et fait surestimer la valeur de T.
- b) Que la transmitivité du niveau capté par P₄ est plus élevée que celle de la moyenne de F₄, ce que semble justifier d'ailleurs le carrot tage électrique.

Courbe de remontée

Cette courbe peut être divisée en trois parties :

La première partie AB correspond à la première minute, temps au cours duquel la pente est forte à cause de "l'effet de capacité" ou effet de "Post Production". La deuxième partie BC a une pente plus faible La remontée se termine par une partie CD qui correspond à un aocroissement de la pente.

Si l'on tient compte de la forme approximative des courbes de remontée, on pourrait émettre l'hypothèse qu'elle correspond à un essai effectué sur un terrain avec une strate privilégiée très conductrice limitée par une barrière étanche. Dans ce cas, la valeur T serait calculée à partir de l'asymptote à CD. Mais un pompage de courte durée-comme celui-ci ne permet pas de négliger cette hypothèse, donc ne peut rien affirmer. Aussi avons-nous calculé les valeurs de T sur CD et BC.

La valeur de T mesurée au cours de la remontée est autour de 10^{-1} , c'est-à-dire, le même ordre de grandeur pour le piézomètre que pendant la descente. Pourquoi cette différence avec celle du forage?

Tracé de la Courbe Théorique à partir de la Relation de Jacob

Avec les valeurs de T et "S" obtenues sur le forage ${\sf F_4}$ et le piézomètre ${\sf P_h}$, nous reconstruisons avec la relation de Jacob :

$$s = 0.183 \frac{0}{1} \log \frac{2.25 \text{ T}}{r^2 \text{ S}}$$

La courbe théorique que l'on aurait dû avoir dans un terrain répondant à ces caractéristiques.

Par ces calculs nous obtenons :

• r · · · · .

Pour Q = 100 1/s
S =
$$1.4 \times 10^{-S}$$

T = 4.5×10^{-2} et 3.6×10^{-1} (piézomètre)
r = 0.15 m

			Forage		Piézomètr	·e
	•		s calculé	s observé	s calculé	s observé
t	=	100 secondes	s = 3m	7.60	s = 0.42	0.42
t	=	500	s = 3.28	8.36	s = 0.45	0.55
t	=	1000	s = 3.80	8.60	s = 0.47	0.58
t	=	30000	s = 3.99	9.37	s = 0.54	0.63

Pour t = 30.000 secondes, nous avons un rabattement de: 3.92 maqui est inférieur au 9.37 observé. Sachant que S = Sp + Sn, considérant que s = 3.99 m = Sn. Le reste serait dû aux pertes de charges. Nous pouvons considérer T = 4.5×10^{-2} comme la valeur minimale que peut avoir la transmitivité. Pour T = 3.6×10^{-1} obtenu sur le piézomètre nous obtenons un rabattement de 0.54 m. Dans ce cas T = 3.6×10^{-1} pourrait être considéré comme la valeur maximale de la transmitivité. Donc la vraie valeur de T serait intermédiaire, soit autour de 10^{-2} m²/s.

Cependant, la comparaison du rabattement et du débit conduirait à une valeur de T (sous estimée et calculée à partir de la méthode de Theis) d'environ 2.6×10^{-2} . Jacob donne T = 4.5×10^{-2} , ce qui parait tout à fait cohérent.

• •

Les graphiques obtenus (descentes et remontées) assez compliqués, ne permettent pas de rejeter la valeur de $T = 3.6 \times 10^{-1}$. Cependant, les faciès (sur 35 m d'épaisseur) et le comportement du puits conduisent à admettre une transmisivénée de 4×10^{-2} .

Intervalles des mesures de rabattements :


L'intervalle des mesures de rabattements doit être très court pen - dant les 30 premières minutes du pompage, avec des mesures de rabattements très précises, surtout en milieu fissuré.

Tableau IV-4. Intervalles entre les mesures de rabattements au cours du pompage d'essai :

Espac	es de Minut	e Temps es 🤫 S	Intervalles entre les mesures entre
1	ia	10	30 secondes
10	å	20	1 minute
20	à	30	2 minutes
100	à	200	10 minutes
300	à	400	30 minutes
	600		l heure

Choix de l'époque de l'essai :

Eviter les périodes de fortes variations barométriques et de précipitations intenses. Dans tous les cas, il est recommandé d'utiliser un barographe. Pour l'étude des conditions aux limites aquifère/rivière, éviter les périodes de crues du cours d'eau.

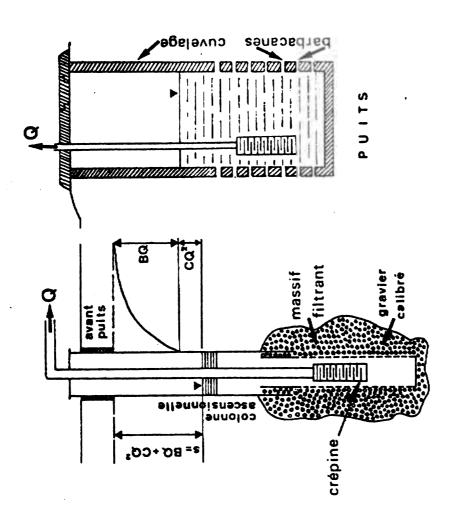


Fig. 11-11 - Complexe aquifère/ouvrage de captage. Equipement technique des puits et sondages. Signification des pertes de charge.

=			
■			
. .			

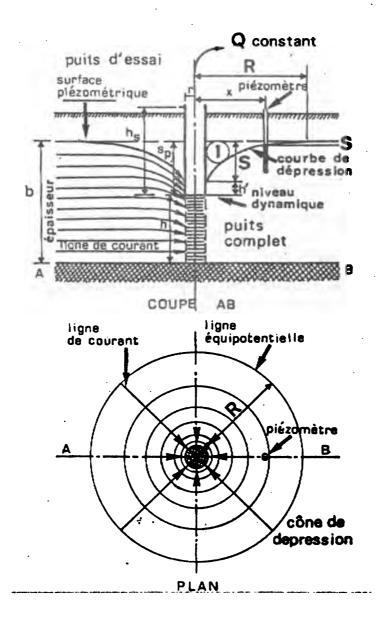
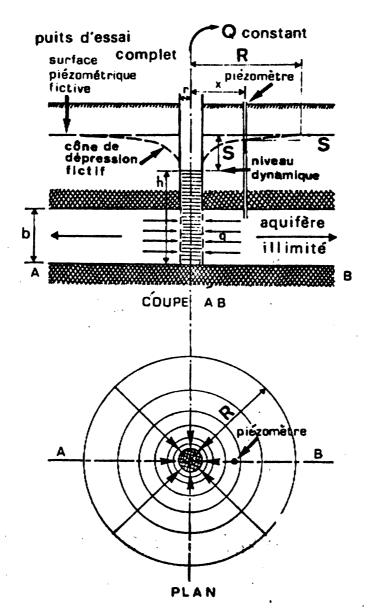



Figure IV-2 Effets du pompage dans un aquifère à nappe libre, à un instant donne l, cône de dépression.

Figu: 3V-3 - Effets du pompage dans un aquifère à nappe captive.

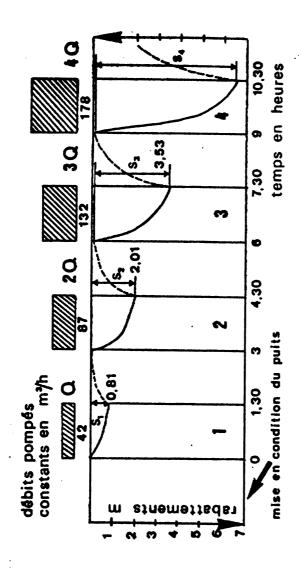


Fig 174V-4 - Essai de puits par pompage à paliers de débit de courtes durées dans un sondage captant l'aquifère à nappe libre de la craie. D'après J. Forkasiewicz (1978). Graphiques débits/temps (en haut) et débits/rabattements résiduels (en bas). Voir tableau 20.

•			
•			
•			
•			
J			
J			
-			

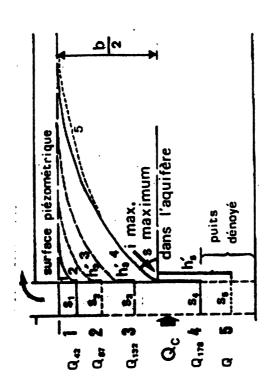


Fig. 1740-5 - Schéma de l'évolution du cône de dépression en fonction du rabattement dans le puits au cours de l'essai de puits, fig. 73 et tableau 20. Vitesse critique et débit critique, rabattement maximum dans l'aquifère. Dénoyage du puits.

•						
æ						
W						
بيد						
\ U						
- -~						
-						
		•				

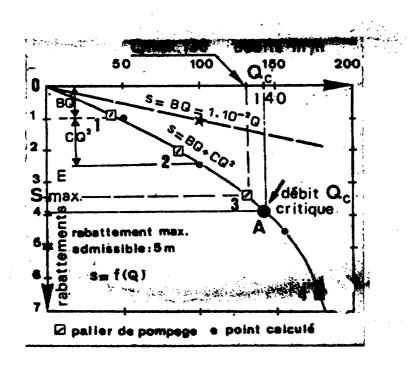


Figure IV-6 Courbe débits-rabattements ou courbe caractéristique du puits. Le débit critique, Qc = 140 m³/h, est calculé par l'abscisse du point A déterminé par l'augmentation de la pente de la courbe. Essai de puits. Calcul du débit maximum d'exploitation, Qmax. = 130 m³/h, correspond à un rabattement maximum, S max., en fonction du débit critique et du rabattement maximum admissible, 5 m.

. V

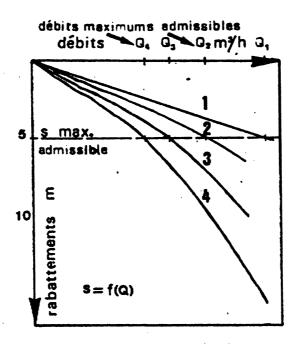


Fig. IV-7 La courbe caractéristique du puits est la fiche d'identité de l'ouvrage. D'après J. Forkasiewicz (1978)
1, puits idéal; 2, puits réel après acidification ayant amélioré sa caractéristique 3, puits réel à l'état initial; 4, puits réel après vieillissement (colmatage).

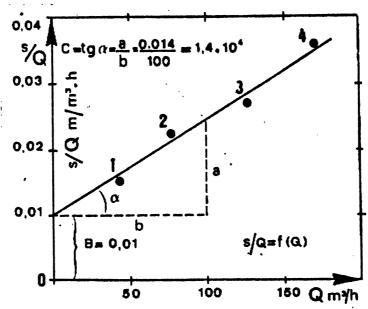
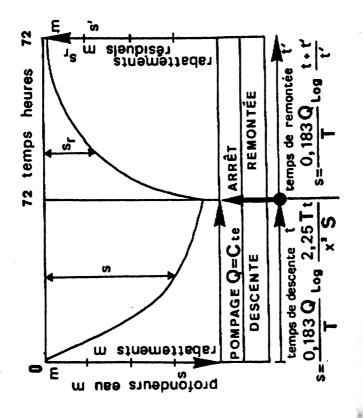



Fig. IV-8 Droite débits/rabattements spécifiques. Calcul des pertes de charge. D'après J. Forkasiewicz (1978).

•

kécution du pompage d'essai et interprétation des données par la noximation logarithmique de C.E. Jacob (1950). S_r , rabattement résidu

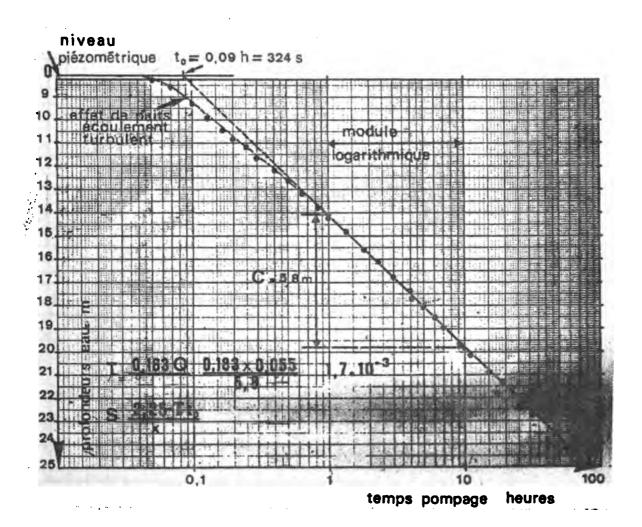
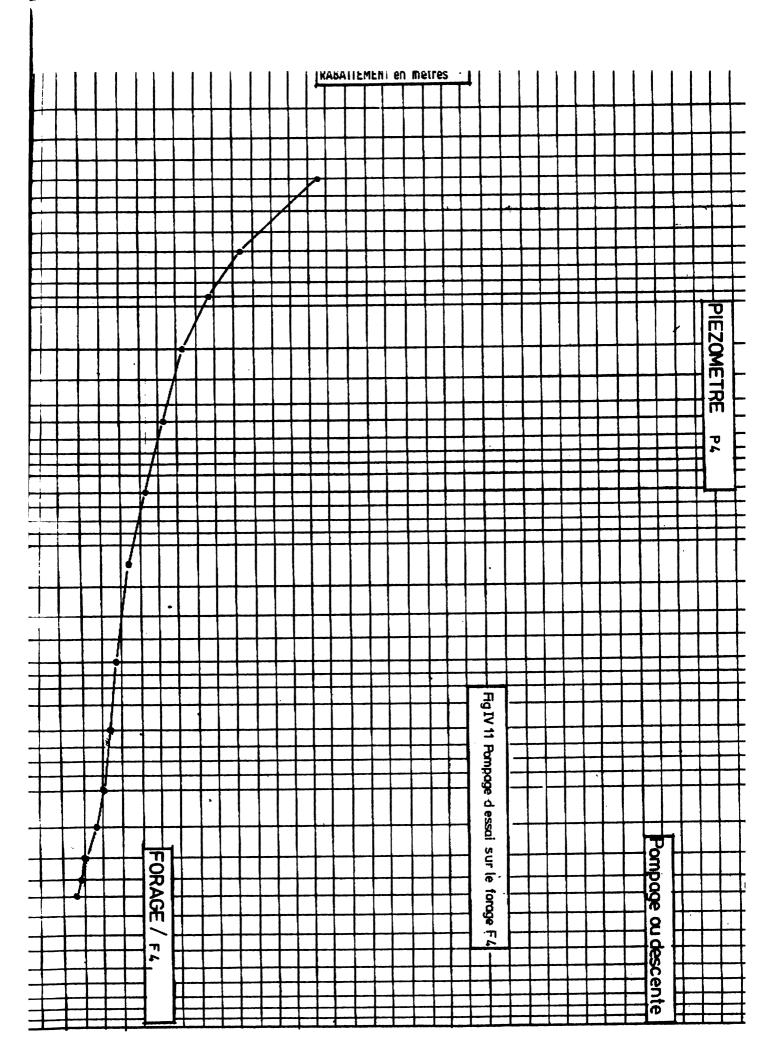
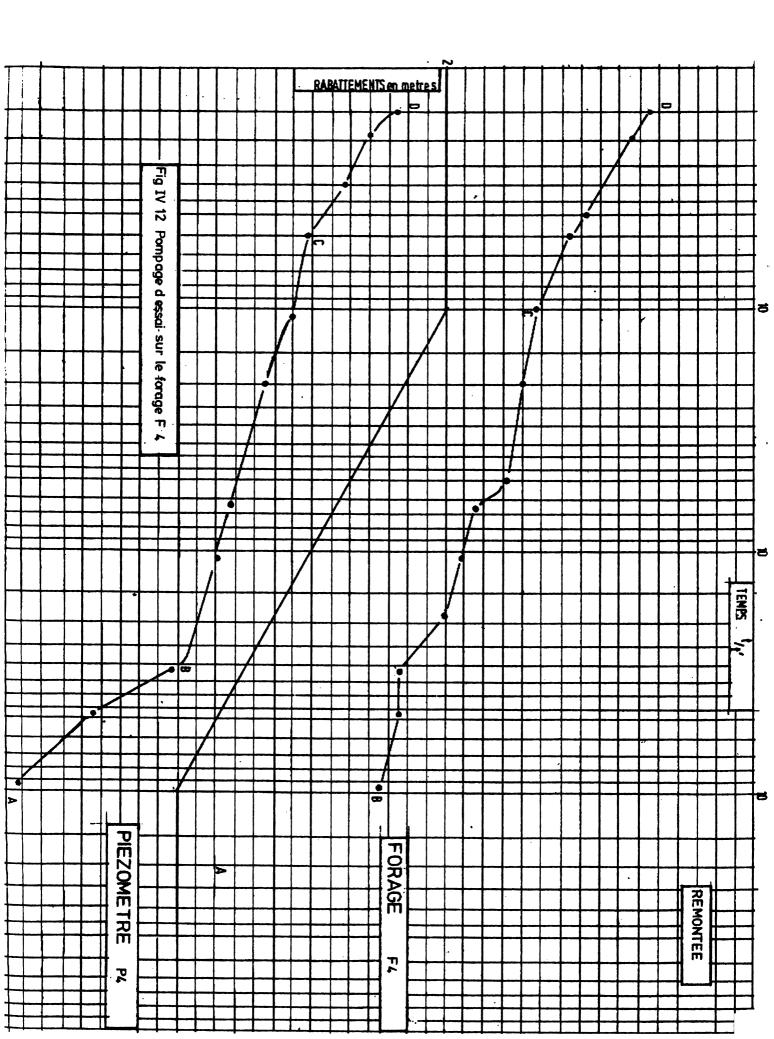




Fig. IV-10 Pompage d'essai dans l'aquifère à nappe captive illimité des sables albiens du bassin de Paris, à Ivry-sur-Seine. D'après J. Forkasiewicz (1972). Droite représentative profondeurs/temps de pompage en descente.

.

CINQUIEME PARTIE

LES CARTES PIEZOMETRIQUES

Les cartes de la surface piézométrique, dites piézométriques, éta blies avec les données sur les niveaux piézométriques, représentent, à une date donnée, la distribution spatiale des charges et des potentiels hydrauliques. Elles figurent également les conditions aux limites hydrodynamiques Des cartes des fluctuations de la surface piézométrique des nappes libres, dans l'espace et dans le temps, sont également établies.

Les cartes piézométriques sont les documents de base de l'analyse et de la schématisation des fonctions capacitives et conductrice du réservoir et du comportement hydrodynamique de l'aquifère. C'est la synthèse la plus importante d'une étude hydrogéologique.

5.1 Niveau Piézométrique

Nous devons considérer les nappes libres et captives.

5.1.1 Nappes Libres

Supposons un puit creusé dans un horizon aquifère libre en écoulement. La surface de l'eau en période de repos, se stabilise à un niveau déterminé en équilibre avec la surface piézométrique des eaux souterraines, c'est le niveau piézométrique (Fig. V-1)

Dans le puits, nous pouvons mesurer la hauteur d'eau h, distance qui sépare le fond de l'ouvrage du niveau piézométrique et la hauteur d'comprise entre la surface de l'eau et le terrain naturel. La charge piézométrique H, exprimée en hauteur d'eau est:

z, étant la côte de l'ouvrage par rapport au plan de comparaison AB, toutes les données sont exprimées en mètres.

On appelle <u>piézomètres</u> des puits artificiels, en général de faible diamètre, forés dans la couche aquifère, pour mesurer le niveau piézométrique. Un ouvrage quelconque, non exploité, peut être équipé en piézomètre

Le plan de comparaison choisi est le niveau de la mer; z représente donc la côte absolue de la surface de l'eau. La charge piézométrique est donc exprimée par la hauteur d'eau en mêtres correspondant à l'altitude du niveau piézométrique.

Pour une source, le niveau piézométrique est la côte de l'émergence naturelle.

5.1.2 Nappes Captives

Dans le cas d'une nappe captive, la charge piézométrique est (fig. V - 2):

$$H = z + h$$

h étant la hauteur d'eau, au-dessus du terrain naturel, dans un tube piézométrique.

5.2 Surface Piézométrique

<u>Définition</u> - Dans une nappe libre en écoulement, le lieu d'application des charges piézométriques est la surface piézométrique. Celle-ci s'identifie sommairement avec la surface libre des eaux souterraines, limite supérieure de la zone de saturation. Les charges piézométriques étant, par suite des

pertes de charge, décroissantes dans le sens de l'écoulement, cette surface est dite également surface de dépression.

Nous savons que dans l'écoulement en régime laminaire, les filets liquides sont parallèles entre eux et à l'axe d'écoulement. Les filets liquides supérieurs constituent la surface piézométrique.

La surface piézométrique, dans son ensemble, présente une morphologie qui lui est propre, comparable à celle d'une surface topographique: dépression, ondulation, ruptures de pentes, etc... On peut y tracer des courbes de niveau joignant les points d'égale altitude. Ces courbes représentent le lieu des points d'égale charge ou d'égal niveau piézométrique. Ce sont: les courbes isopièzes ou courbes de niveaux de la surface piézométrique d'une nappe. Les lignes de courant sont perpendiculaires aux courbes isopièzes, l'ensemble formant un réseau orthogonal

Un plan vertical passant par un des filets liquides de la surface piézométrique détermine le profil de dépression. Dans cette section longitudinale les filets liquides sont parallèles à la surface libre et au substratum.

5.3 Etablissement des cartes en courbes isopièzes

L'inventaire des points d'eau de la nappe considérée: naturels (sources, marais) ou artificiels (puits et forages) permet de calculer leur niveau piézomètrique. Les mesures doivent être effectuées, pour les puits et forages dans les conditions d'équilibre, en absence de pompage et pour l'ensemble des points d'eau d'une même nappe, dans le laps de temps le plus court possible (1 à 2 jours). Tous les points d'eau sont portés avec leur côte piézométrique sur une carte en courbes de niveau dont l'échelle est adaptée au problème à resoudre: 1/50 000, 1/25 000, 1/10 000. On trace alors les courbes isopièzes en joignant les points d'égale côte piézométrique comme on opérait pour l'établissement d'une carte topographique en courbe de

niveau. L'équidistance des courbes est choisie en fonction du gradient hydraulique, de l'échelle et de la densité des points d'observation (fig V-3)

La carte obtenue traduit la forme de la surface piézométrique de la nappe, étudiée à une époque déterminée. Les mêmes documents dressés à des périodes différentes, permettent de suivre l'évolution des horizons aquifères souterrains et de calculer les fluctuations de leurs réserves.

Interprétation générale et étude des cartes en courbes isopièzes

Les cartes en courbes isopièzes permettent en premier lieu:

- De calculer la profondeur de la surface piézométrique
- De tracer les lignes de courant et de déterminer la direction de l'écoulement
- De calculer le gradient hydraulique
- De déterminer le type de nappe
- 5.4 Calcul de la profondeur de la surface piézométrique

Les courbes isopièzes étant portées sur des cartes topographiques en courbes de niveaux, il est facile de calculer en un point quelconque la différence de côte entre la surface du sol et la surface piézométrique. Par exemple, au point C (fig V - 3), l'altitude étant de 73 m et le niveau piézométrique de 71 m environ, la profondeur de la surface piézométrique sera de 2 m.

5.5 Tracé des lignes de courant et détermination de la direction de l'écoulement

La direction de l'écoulement, matérialisée par les lignes de courant, est la droite de plus grande pente tracée sur les courbes isopièzes,

• . . •

donc la perpendiculaire à ces dernières.

5.5.1 Méthode élémentaire de détermination.

Soient trois (3) points: A, B, C dont on a déterminé les niveaux piézométriques H₁, H₂ H₃. Nous joignons les trois points par des segments de droites, traçant ainsi un triangle ABC (Fig V - 4). chaque côté est divisé en segments proportionnels. Mais rejoignons par des droités les points d'égales altitudes, Ce sont les courbes iseplèzes. La droite AD perpendiculaire représente une ligne de courant et permet de déterminer l'axe et la direction de l'écoulement.

La première opération pour l'interprétation des cartes en courbes isopièzes consiste à tracer les lignes de courant. Dans les cas simples, nous élevons les perpendiculaires aux courbes isopièzes (fig V • 4a et b) Une flèche indique le sens de l'écoulement, déduit des niveaux piézométriques, Mais en général, les tracés sont plus complexes. Nous tracerons d'abord les axes principaux de circulation des eaux souterraines qui correspondent aux trajets les plus courts et les plus simples, en général aux centres des arcs élémentaires de courbes (fig. V - 5, c). sur un axe d'écoulement, nous élevons la perpendicaulaire à chaque courbe isopièze et adoucissons les angles pour dessiner une courbe régulière. Les directions principales sont soulignées par des traits accentués (fig. V - 5 c, d, e, f).

5.6 Calcul du gradient hydraulique

Le gradient hydraulique est calculé sur un profil tracé dans un plan vertical passant par une ligne de courant (ligne de plus grande pente) Il est donné par la formule (fig. V - 4, b):

$$i = \frac{H_1 - H_2}{I}$$

		•	
			~

Les niveaux piézométriques H₁ et H₂ sont déterminés par les courbes isopièzes et la distance L, entre ces deux points, par l'échelle de la carte.

$$1 = \frac{40 - 36}{80} = \frac{4}{80} = 0.05$$

5.7 Dětermination du type de nappe

La forme de la surface piézométrique permet de distinguer deux grands types de nappes:

- Les nappes libres avec:
 - Les mappes cylindriques:
 - Les nappes radiales

5.7.1 Les nappes captives

Les nappes cylindriques sont caractérisées par une surface piézométrique cylindre dont les génératrices sont horizontales et perpendiculaires aux filets liquides, donc à l'axe du courant.

L'écoulement à deux dimensions peut être analysé dans un plan, passant par une ligne de courant. L'intersection de la surface piézométrique par le plan ainsi défini donne une courbe, le profil de dépression de la nappe. Dans la nappe cylindrique tous les profils de dépression sont identiques.

Nappes radiales - Les nappes cylindriques parfaites sont rares dans les conditions naturelles de gisement des eaux souterraines. En général, la

		·	

surface piézométrique revêt une forme conique, parabolique ou hyperbolique. Les filets liquides convergents ou divergent, s'écoulent par tranches longitudinales verticales lesquelles, contrairement à la nappe cylindrique, ne sont pas parallèles mais divergentes ou convergentes (fig V - 6). Cet écoulement, dit radiale, peut être analysé dans trois (03) dimensions avec trois axes de coordonnées. Les profils de dépression ne sont plus identiques sauf dans des cas exceptionnels.

- 5.7.2 Nappes captives Les nappes captives sont caractérisées par un profil linéaire, donc par des courbes isopièzes équidistantes.
- 5. 8 Structures élémentaires de la surface piézométrique

Les principales structures élémentaires de la surface piézométrique sont de quatre types:

- Les nappes régulières
- Les nappes alluviales
- Les courbes fermées
- Les seuils hydrauliques
- 5.8.1 Nappes régulières Sur les cartes en courbes apparaissent des zones où les structures hydrologiques sont homogènes: Ce sont les nappes régulières. Les nappes régulières peuvent être étudiées par l'examen de trois caractéristiques des courbes:
 - La forme et le groupement
 - La courbure
 - L'espacement

	·		
	·		

5.8.1.1 Forme et groupement des courbes isopièzes

La forme et le groupement des courbes isopièzes permettent d'identifier les différents types de nappes décrits précédemments:

- Nappes cylindriques
- Nappes radiales

Nappes Cylindriques

Une nappe cylindrique est caractérisée par des courbes isopièzes rectilignes et parallèles. Les lignes de courant sont parallèles. L'ensemble dessine un quadrillage régulier.

Nappes radiales (à filets convergents ou divergents)

Elles sont caractérisées par des courbes isopièzes incurvées en arc de cercle de rayon et d'espacement variables. Les lignes de courant sont convergentes dans les nappes à filets convergents et divergentes dans les nappes à filets divergents.

Dans les premières, la concavité des courbes isopièzes est orientée vers l'aval et vers l'amont dans les secondes.

5.8.1.2 Courbures des courbes isopièzes

Dans le cas général, les courbes isopièzes dessinent des arcs de cercle plus ou moins ouverts, structures représentant tous les intermédaires entre les nappes cylindriques et les nappes à filets divergents ou convergents. Les courbes isopièzes sont alors caractérisées par l'orientation de leur concavité par rapport à la direction de l'écoulement.

Le type, à concavité orientée vers l'amont est l'expression soit d'un débit important, soit d'une faible perméabilité ou de la superposition des deux.

Le type, à concavité orientée vers l'aval, marque une zone déprimée, donc de débit faible, ou des deux (fig. V - 7).

5.8.1.3Espacement des courbes isopièzes

L'espacement des courbes isopièzes exprime directement le gradient hydraulique et traduit la forme du profil de dépression.

5.8.2 Nappes alluviales

Les nappes aquifères des alluvions des vallées et des plaines, occupées par des cours d'eau, présentent des caractéristiques particulières qui peuvent être étudiées par l'analyse des courbes isopièzes. Les relations hydrauliques entre les eaux libres et souterraines présentent trois (03) modes d'écoulement par rapport à la nappe aquifère.

Drainage

- Chainage par le cours d'eau;
- Alimentation par le cours d'eau;
- Mixte

5.8.2.1 Drainage de la nappe alluviale par le cours d'eau

Les eaux souterraines s'écoulent vers le cours d'eau qui draine la nappe alluviale. Les lignes de courant convergent vers la rivière. Les courbes isopièzes dessinent des arcs de cercle à concavité orientée vers l'aval (fig V - 8 et Fig. 9c).

5.8.2.2 Alimentation de la nappe alluvaile par le cours d'eau

Ici les eaux souterraines sont alimentées par les eaux de surface. Les lignes de courant divergent vers la rivière et la concavité des courbes isopièzes est orientée vers l'amont (fig V - 8,b et fig V - 9,b).

5.8.2.3 Relations Mixtes

Il arrive parfois que le cours d'eau draine la nappe phréatique d'une rive et alimente celle de l'autre. C'est le cas des rivières au canaux creusés sur les versants (fig V - 8, c et fig V - 9 c).

Le secteur de la nappe aquifère situé sous le lit est appelé nappe sous-fluviale ou underflow.

5.8.3 Courbes fermées - Soient des courbes fermées apparaissent sur les cartes en courbes isopièzes. Elles traduisent soit des protubérances, soit des dépression (fig 130 et 131 G)

5.8.4 Seuils hydrauliques

Les seuils hydrauliques apparaissent sur les cartes hydrologiques par des courbes isopièzes brusquement rapprochées, très serrées, marquant donc une chute rapide de la pente de la surface libre de la nappe et par des alignements de sources artériennes.

Ces structures aquifères sont dues à des conditions géologiques particulières, liées à d'importantes fractures profondes intéressant le substratum et le complexe aquifère. Ici la fouille joue le rôle de barrage souterrain naturel, par la mise en contact de couches de perméabilité différentes.

5.9 Analyse des fluctuations de la surface piézométrique

L'analyse de la surface piézométrique des aquifères à nappe litre aboutit à l'étude de leur comportement hydrodynamique dans l'espace à la date des mesures des niveaux piézométriques. Celle des flutuactions introduit leur variabilité dans le temps. Elle conduit à trois (03) ensembles de données.

- Evolution du comportement hydrodynamique dans le passé (historique), base des prévisions au cours d'étapes futures. Etude
 des variations dans le temps des conditions aux limites hydrodynamiques et plus particulièrement sur l'alimentation par infiltration des précipitations efficaces;
- Evaluation de la variation de la réserve en eau souterraine ou réserve régulatrice et son évolution dans le temps;
- Prévision des niveaux piézométriques d'étiage et des débits d'é tiage des cours d'eau drainants.

La carte piézométrique est ainsi le document essentiel de synthèse d'une étude hydrogéologique. Elle est indispensable au calage des modèles mathématiques de simulation hydrodynamique en régime permanent.

			*
		•	

EVALUATION DES RESSOURCES EN EAU SOUTERRAINE REGIONALES

J. MARGAT

Bureau de recherches géologiques et minières Service géologique national (France)

1. Définition des ressources en eau souterraine

Le concept de ressource nait originellement à l'échelle locale, lorsque l'explotant d'un ouvrage de captage d'eau souterraine (puits ou forage), ou d'un groupe d'ouvrages, se pose la question de savoir si le débit capté, permis initialement et momentanement par la productivité de l'aquifère et par les caractéristiques de l'ouvrage, est durable: sera-t-il entretenu par l'alimentation de la nappe environnante? La ressource est conçue d'abord comme une assurance de durée de la production d'eau locale. Puis elle est associée à la détermination du débit maximal que l'on peut tirer d'un puits en sécurité (= "safe yield" des auteurs de langue anglaise) c'est-à-dire que l'on ne pourrait dépasser sans rupture d'équilibre, et sans inconvénient pour l'exploitant.

De telles ressources conçues localement ne pourraient cependant pas être évaluées pour chaque point de captage dans une nappe sans doubles-comptes: elles ne seraient pas additionnables à l'échelle de l'ensemble d'une nappe souterraine.

Pour le responsable de la planification et de la gestion collective des eaux souterraines, les ressources doivent être définies en se rapportant à une nappe entière, à un aquifère de superficie déterminée, donc à l'échelle régionale.

A cette échelle aussi, la conception des ressource en eau souterraine en tant que ressource naturelle renouvelable est associée à la notion d'équilibre et relative au temps: à terme plus ou moins lointain, un nouvel équilibre intégrant les actions humaines remplace l'équilibre naturel primitif. Les ressources en eau souterraine renouvelables se définissent en quantité comme le débit maximal qui peut être prélevé dans une nappe en régime d'équilibre dynamique meyen et sans conséquence inacceptable pour la collectivité.

Les eaux souterraines offrant en outre, dans certaines conditions, des ressources non renouvelables, ce qui les différencie des eaux de surface.

Les ressources non renouvelables en eau souterraine sont liée à la possibilité d'exploiter une partie des réserves des aquifères, pendant une durée limitée, mais qui peut être longue lorsque les réservoirs aquifères ont une grande capacité:

- soit au cours de l'évolution vers un nouvel équilibre: avant de capter seulement une partie du débit naturel renouvelé d'une nappe il faut nécessairement faire baisser ses niveaux, donc extraire une partie de sa réserve,
- soit sans rééquilibre final jusqu'à l'état de la nappe où l'exploitation n'est plus jugée possible par suite de la profondeur des niveaux ou d'autres inconvénients (cas de l'exploitation minière de grands aquifères captifs).

Ces ressources non renouvelables s'expriment en volume, ou en flux pendant une durée finie additionnable temporairement au flux de ressources renouvelables.

- . La définition des ressources en eau souterraine régionales comporte deux aspects :
 - (1) Un aspect absolu : bases ou facteurs physiques :
 - . flux d'apport naturel, variabilité et sensibilité éventuelles aux effets d'exploitation,
 - . apports supplémentaires qui peuvent être déterminés (induits) par l'exploitation,
 - . volume d'eau en réserve,
 - . caractéristiques de qualité de l'eau,
 - conditions techniques d'exploitation et productivités des ouvrages de captage, qui déterminent les travaux à faire pour mobiliser l'eau et les coûts d'exploitation,
 - . répartition de ces différants facteurs dans l'espace

Les ressources ne se définissent donc pas simplement par un flux d'eau exprimable par une grandeur unique (= débit global moyen d'une nappe souterraine), selon le mode traditionnel, mais par un ensemble de potentialités naturelles offertes: les ressources en eau sont définies par de multiples dimensions, homologues des dimensions par lesquelles s'expriment symétriquement les demandes en eau.

L'ensemble de ces éléments définit les ressources naturelles ou théoriques.

(2) - Un aspect relatif: facteurs économiques et écologiques, constituant des facteurs limitants c'est-à-dire des contraintes:

- soit du point de vue de ceux qui seraient sensibles aux répercussions de l'exploitation à l'extérieur, notamment sur le régime des eaux de surface, sur la végétation, sur la stabilité du sol, sur la liberté d'occupation du sol. Les incidences maximales tolérées aux limites de l'aquifère fixent des contraintes externes.
- soit du point de vue des exploitants de l'eau souterraine (considérés collectivement), donc relativement aux utilisations de l'eau: la durée des productions d'eau garantissant la sécurité des approvisionnements doit être assurée - à plus ou moins long terme -, les coûts d'exploitation ne doivent pas dépasser un maximum acceptable, la qualité de l'eau ne doit pas être diminuée au-dessous d'un minimum admissible.

L'exploitabilité des eaux souterraines est relative aussi aux avantages pratiques et économiques que les utilisateurs trouvent à exploiter l'eau souterraine plutôt que l'eau de surface.

Les limites d'exploitabilité s'exprime par des contraintes internes traduites généralement en termes hydrauliques par des baisses de niveau de la nappe maximales tolérables.

La prise en considération de ces éléments permet de définir:

- les ressources potentielles, relative à des contraintes externes déterminées, qui traduisent elles-mêmes des choix d'économie et de politique de l'eau régionale, et plus largement d'économie générale;
- puis les ressources exploitables en pratique, relatives en outre à des contraintes internes plus spécifiques aux objectifs économiques de l'utilisation de l'eau. Ces objectifs pouvant changer, les ressources exploitables peuvent aussi être redéfinies et réévaluées.

Ainsi les ressources en eau souterraine exploitables ne sont pas définissables a priori indépendamment de la confrontation entre les potentiels offerts et les critères des utilisateurs, donc elle exprime le résultat.

•			
	·		
	•		

Les ressources en eau souterraine régionales ne doivent donc pas être définies sur une base exclusivement physique (hydrogéologique). Celleci offre seulement une gamme de possibilités, nécessaire mais non suffisante pour planifier la gestion des eaux souterraines.

La définition des ressources doit aussi être basée sur des critères d'économie de l'eau régionale et sur des critères socio-économiques, donnant lieu à des choix.

- . En résumé, les ressources en eau souterraine ont le sens de possibilités offertes à l'homme de détourner à son profit une partie des eaux présentes et circulant naturellement dans le sous-sol: c'est une notion d'économie de l'eau. Leur définition "de même que celle des ressources en eau de surface" doit obéir à deux principes essentiels:
 - principe de rééquilibre à terme, s'il s'agit de ressources renouvelables.
 - principe d'acceptabilité des conséquences de l'exploitation.

2. Evaluation des ressources

L'évaluation des ressources en eau souterraine régionales comprend donc une suite d'opérations:

- Décrire et déterminer quantitativement les éléments physiques, c'està-dire les conditions hydrogéologiques et le régime hydrodynamique des eaux souterraines: Leur ensemble constitue l'analyse du ou des systèmes aquifères considérés.

- Elaborer de plans de développement d'exploitation optionnels, selon différents degrés d'intensité et différentes modalités (répartition par zone et régime des prélèvements).
- Estimer les coûts correspondants (quantité de travail, coût financier).
- Estimer et prévoir les effets des exploitations, suivant chaque plan:
 - . effet intérieurs : sur le fonctionnement hydraulique de chaque système aquifère exploité, en particulier sur les conditions de son alimentation (le renouvellement de la ressource est-il maintenu ou compromis?);
 - . effets extérieurs : sur le régime des eaux de surface, sur la stabilité du sol, etc...
- Exprimer les contraintes pouvant limiter les possibilités pratiques d'exploitations, selon différents points de vue (contrainte externes et internes).
- Confronter les répercussions des divers degrés et modalités d'exploitation projetables avec les contraintes précédentes.

3. Méthodologie

lère phase : analyse des systèmes aquifères

Du point de vue l'évaluation des ressources en eau souterraine, un système aquifère est le domaine délimité dans l'ensemble duquel les influences de diverses actions possibles (captages ou autres) peuvent

se propager et se cumuler, en modifiant le fonctionnement hydraulique naturel.

Son analyse a pour but d'exprimer les informations qui permettront d'élaborer un schéma synthétique concrétisable éventuellement par un modèle de simulation analogique ou numérique sur lequel il sera possible de superposer les influences de captages projetés calculées ou simulées, dont on cherche à apprécier les effets.

Analyser un système aquifère consiste essentiellement à décrire sa structure hydrogéologique et son fonctionnement hydraulique naturel sa dynamique qui déterminent son comportement : sa manière de réagir à des actions "telles que des captages" qui s'ajoutent aux facteurs naturels du régime des eaux souterraines et qui transforment ce régime.

La structure d'un système aquifère est sa composition en formations géologiques relativement homogènes, définissables par leur géométrie et leur nature lithologique: c'est la traduction hydrogéologique plus ou moins simplifiée d'une structure géologique plus ou moins complexe.

Cinq types de "composants hydrogéologiques" essentiels peuvent participer à la constitution ou à la délimitation d'un système aquifère:

- formations non saturées (sols, roches),
- aquifères, libres ou captifs (roche perméables),
- semi-perméables non capacitifs.

	·		

- semi-perméables capacitifs ("aquitards"),
- imperméables (aquicludes).

Chacun d'eux se caractérise par une gamme particulière de paramètres hydrauliques et par un comportement spécifique vis-à-vis de la circulation et de l'emmagasinement de l'eau dans le sous-sol (cf. tableau V -1).

La dynamique du système est déterminée avant tout par les conditions qui règnent à ses limites. La définition correcte de ces limites a donc une importance majeure. Ces limites sont aussi bien les frontières périphériques du système que sa surface.

Les conditions aux limites sont:

- soit des conditions de potentiel (niveau), imposées par exemple par des cours d'eau ou des rivages de plan d'eau de surface,
- soit des conditions de flux (débit) entrant ou sortant, notemment l'alimentation par infiltration à travers une surface libre, ou à l'inverse l'évaporation agissant sur une nappe libre (zone aride), ou un flux nul (limites étanches).

Ces conditions peuvent être stables ou variables dans le temps (avec ou sans continuité): elles font alors l'objet d'historiques ou de prévisions, et constituent dans tous les cas des conditions initiales. Enfin, ces conditions sont plus ou moins modifiables artificiellement: une condition de potentiel peut permettre une modification du débit et parfois une inversion du sens du flux à une limite. A cet égard, une compréhension claire des relations entre aquifères et cours d'eau de surface est fondamentale (cf. tableau V-2)

La comparaison des flux d'alimentation et des flux sortants prend la forme comptable classique du bilan d'eau, qui vérifie en principe l'égalité des flux entrants et sortants globaux et moyens en régime naturel: pour une période de référence assez longue fa résultante des variations de réserve est négligeable. En régime déjà exploité, les prélèvements et les différences de réserve ("déstockages") éventuelles sont à prendre en compte.

L'évaluation, vérifiée par le bilan, du flux moyen total regu et débité par un aquifère ne détermine cependant que les ressources "naturelles" théoriques en eau souterraine considérées du seul point de vue de la quantité et globalement. L'établissement du bilan d'une nappe est une opération utile, en phase d'étude initiale, mais insuffisante pour concourir à elle seule à évaluer les ressources.

La combinaison des différentes structures hydrogéologiques et des conditions aux limites fournit, une grande variété de types de système aquifère possibles. Ceux-ci peuvent toutefois se grouper en un petit nombre de classes, correspondant à autant de types de stratégie possible d'exploitation ou de gestion des eaux souterraines, selon quelques critères principaux : étendue du système, ordre de grandeur de son alimentation naturelle, conditions hydrodynamiques (nappe libre ou captive), productivités unitaires des ouvrages les plus fréquentes, degré de liaison avec les eaux de surface (cf. tableau V-3)

Dans tous les cas, la connaissance d'un système aquifère et par conséquent l'effort à entreprendre pour l'analyser, sont relatifs à l'objectif d'étude, qui fixe le degré de précision nécessaire et suffisant:

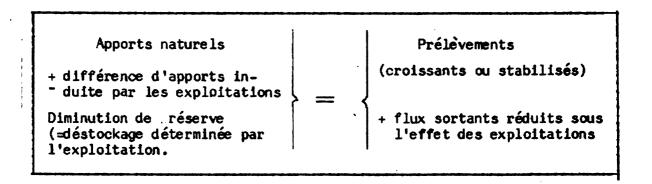
L'aquisition des données servant à décrire la structure et la dynamique d'un système procède par l'application des méthodes classiques d'investigation et identification: observations sur le terrain, reconnaissance en sub-surface et essais, selon un programme approprié à chaque cas.

l'importance relative de chacune de ces techniques pour fournir les informations voulues est résumée dans le tableau-V-4: utilité des don-nées hydrogéologiques pour caractériser un système aquifère.

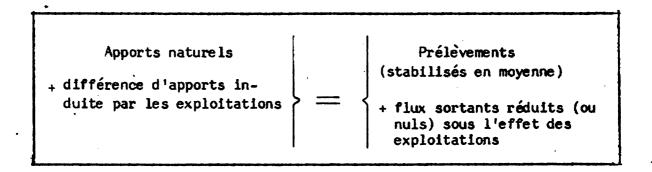
<u>2ème phase</u>: Modélisation des systèmes aquifères et simulation de plans et scénarios d'exploitation.

- Les informations qui résultent de l'analyse du ou des systèmes aquifères sont d'abord réunies et synthétisées en un schéma, ou "modèle conceptuel", exprimé par des documents graphiques ou cartographiques et par des tableaux de données numériques.
- . Matérialiser ce schéma de synthèse par un modèle de simulation "numérique en général" n'est nécessaire en principe que si le système aquifère est trop complexe pour que l'on puisse opérer uniquement des calculs en appliquant des solutions analytiques : ce qui est le plus souvent le cas.
- Les techniques de résolution numérique et de programmation pour ordinateur, utilisées pour construire de tels modèles, ne sont pas abordées ici. Il appartient aux hydrogéologues de connaître le mode d'emploi de ces outils, mis à leur disposition par les informaticiens, plutôt que leur fabrication. Des logiciels ("software") appropriés ont été

élaborés et éprouvés en pratique par de nombreux organismes d'étude:


L'ajustement "ou calage, ou réglage-d'un modèle consiste à reproduire assez exactement l'ensemble des données observées, notemment la répartition des potentiels (niveaux) dans l'espace en régime permanent, et l'évolution dans le temps des niveaux ou de débits écoulés aux limites en régime variable.

Un modèle de simulation permet notamment d'établir un bilan d'eau du système aquifère beaucoup plus exact, carrochérent avec les valeurs connues des paramètres internes, et ne résultant plus seulement d'un compte global et moyen.


- Différentes variantes de plans ou scénarios d'exploitation sont conçues en fonction d'objectifs de développement économique : situations des ouvrages de captage, prélèvements initiaux, croissance jusqu'à un terme donné.
- . Ces plans et scénarios d'exploitation sont simulés par le modèle qui indique, pour chaque cas, les effets physiques prévisibles:
 - transformation du fonctionnement hydraulique du système aquifère, d'abord au cours de son évolution transitoire, puis dans son état de réequilibre dynamique final (s'il est réalisable),
 - effets aux limites du système aquifère : évaluation et situation des changements déterminés par rapport au régime naturel : modifications possibles de l'alimentation (augmentation ou diminution), réduction des débits sortants.

La transformation de la dynamique de la nappe et les modifications des flux échangés aux limites se traduisent par un bilan d'eau différent du bilan naturel initial :

d'abord pendant la phase d'évolution (notamment de croissance des prélevements)

puis en régime de rééquilibre dynamique

Remarque: le flux de ressource qui équilibre les prélèvements dans ces bilans peut être supérieur au flux d'alimentation naturel, parfois de beaucoup. Tout particulièrement dans le cas de grand aquifère captif, où l'exploitation de la réserve (= ressource non renouvelable) peut prédominer très longtemps sur le captage du flux d'apport naturel. Et

aussi dans le cas d'aquifère relié à un grand cours d'eau, à partir duquel l'exploitation détermine une réalimentation.

La connaissance de ces effets permet de prévoir et calculer leurs conséquences internes : sur les rendements d'exploitation, sur les coûts, parfois sur la qualité de l'eau produite (répartition dans l'espace, évolution dans le temps).

3eme phase : Evaluation des ressources potentielles et exploitables

En premier lieu, il faut définir les contraintes externes, qui résultent éventuellement d'arbitrages, et les exprimer en termes de conditions à maintenir aux limites, pour chaque système aquifère.

Par exemple : débit minimal d'émergences ou de cours d'eau pouvant réalimenter la nappe à conserver, profondeur maximale des niveaux à ne pas dépasser dans des zones localisées définies.

. On cherche ensuite quelle est la quantité d'eau maximale qu'il est possible de capter dans chaque système aquifère en respectant ces contraintes externes: cette quantité maximale détermine le flux de ressources potentielles.

Si ces contraintes sont exprimées essentiellement en termes de flux (débit), une première approximation peut résulter d'un bilan:

Apports — flux sortant — Flux de ressources

(Flux éventuellement conserver

modifié par l'exploitation et/ou accru temporairement par diminu-

tion de la réserve

Cette approche comptable et globale est cependant insuffisante car elle ne permet, pas de situer les influences d'un plan d'exploitation défini sur les débits sortants naturels, ni de tenir compte de contraintes non exprimées en flux.

La comparaison de tous les effets de l'exploitation aux contraintes externes définies est généralement opérée au moyen du modèle de simulation approprié, dont la représentation aura été vérifiée.

- . Il reste à définir quelles sont les contraintes internes fixées par les exploitants, selon les différentes options d'utilisation "contraintes pratiques, notamment de localisation, et financières (coût)"

 Puis à confronter à nouveau les conséquences de chaque plan d'exploitation avec ces contraintes, pour déterminer quel est le débit total maximal prélevable en respectant ces contraintes internes "en plus des contraintes externes précédentes", c'est-à-dire les ressources exploitables relatives à chaque objectif d'ulisation.
- . En quantité ces ressources exploitables sont en général inférieures aux ressources potentielles, mais comme celle-ci elles peuvent être aussi bien supérieures qu'inférieures aux "ressources naturelles" assimilées à l'alimentation des nappes souterraines.

4. Conclusion

L'évaluation des ressources en eau souterraine ne peut être indépendement dante de la manière dont on conçoit leur exploitation pour deux raisons essentielles:

		·	

- parce que leur exploitation transforme la dynamique naturelle d'une nappe; elle peut faire croître les apports et surtout elle mobilise nécessairement une partie de la réserve, en fournissant pendant une durée, variable mais parfois très longue, des quantités d'eau en surplus de celles détournées du flux de renouvellement naturel;
- parce que, selon ses modalités, les effets déterminés par l'exploitation se heurtent inégalement aux contraintes internes et externes qui limitent la possibilité pratique et économique de capter l'eau d'une nappe.

Semi-perméables (non capacitifs)	if et à bral no paptifs.	Aquifères discontinus (karstiqu à réservoir libre cap		Aquifères continus		Aquifères ou semi-perméables	COMPOSANTS DES STRU HYDROGEOLOGIQUES
les ifs)	conduits en gé- yés)	scontinus (karstiques) libre capaci	captifs		libres	non saturés es	CTURES
K invariable faible { K invariable faible { L-10-6 à 10-9 m/s K, flux vertical K /b; (coefficient de drainance); S indifférent (n'intervient pas)	Invariable = por osite efficace T variable { (charge) Conduits: K2 conductivité constante ou variable (K2 >> k1) S2 capacité peu variable, négligeable par rapport à S1	~ 1	S variable (pression, puissance de la couche) 10 ⁻⁴ à 10 ⁻³ T/S grand	T/S faible Kh Invariable T Transfable	Kh invariable 1 à 10-6 m/s S invariable porosité efficace 1 à 30.10-2 I variable (charge=altitude de la sur-	K _V tres variable (teneur en eau) = <u>S Q à 2.10-1</u>	PARAMETRES K : perméabilité S : emmagasinement T : transmissivité T/S: diffusivité
unidimensionnel	de conduits) de conduits) unidirectionnel bi ou tridimensionnel (à l'échelle du réservoir)	bidimensionnel horizontal	horizontal		bidimensionnel horizontal ————————————————————————————————————	unidimensionnel	ECOULEMENT DE L'EAU SOUTERRAINE
permanent	transitoire (en général)		ou transitoire		permanent ou transitoire	permanent ou transitoire	TERRAINE régime

1	écoulement nul (ou non signifi- catif)	K négligeable <10 ⁻⁹ m/s S indifférents	Aquicludes ou "Imperméables"
transitoire	drainance)	<pre>Kv/b' (coefficient de drainance) S utile : - nappe libre Smporosité efficace - nappe captive S variable (pression et puissance de la couche ≃10⁻²)</pre>	Semi-perméables capa- citifs ("aquitards") libres ou captifs
	unidimensionnel vertical	K invariable, faible Kh négligeable L-10-6 à 10-9 m/s	

TION OF FLUX		are distance (Nucree)	or confidence as the same of t	alte reset
LIMITES A CONDITION OF PLUR		The state of the s	To the same of the	*
petrol				
LIMITES A CONDITION OF POTENTIEL DEFENSE		To send the send of the send o	The same of the sa	emprovides em liére sepulations print prescriptions
LIMITES A CONDITION				
Annual I			金田	
	LIMITES ETANOJES CO	PTES LIMITES D'ALIMEINTATION	LIMITES D'EMERGENCE	Légende

Limites de systèmes aquifères naturelles ou artificielles

Tablesu :V -2

(schemas bidimensionacis)

BLEAU

<u>۷</u> -3

أأأر المراجعين يهين بهجاها الشارات والعار المحيية الهاف الكوفيانية ما والإرا

. . . .

.

*Les qualificatifs é	e à négligea- invariable, mo ençable par oitation.	
élevé, moyen, faible, s	Moyenne (f/volu- me réservoir) très accrue en cas de dénoyage du réser- voir rendant la nappe libre.	Faible, mais accrue à long terme par appel aux réserves de formations semi-perméables limitrophes.
sont relatifs à une 2	· ·	
zone climatique donnée.] Z ct ct a a a >
&		Aquifères semi- aptifs étendus, aquifères discon- tinue de forma- tions cristalli- nesCestion de flux et indirecte- ment de stock non renouvelé
	Aquifères captifs étendus Cestion de stock non renouvelé. exploitation limitée à terme : gestion de flux locale possible près de limite d'alimentation (nappe libre)	

	·		

TABLEAU V -4 UTILITE DES DONNEES HYDROGEOLOGIQUES

(notes qualitatives)

+-							12				······································		
	surface	Hydro-	logie	Climato-		namique (Hydrographie,	rologie	tigraphie, '	Géologie	Données (et techiniqu	Sys
	. Hydrométrie Q f(x, y) et f(t)	[. Limnimétrie h $f(x, y)$ et $f(t)$. Températures	. Précipitations	Variations piézométriquesh f(t)	Piézométrie h f(x,y)	Pompages d'essai . Essais / échantillon	, Géomorphologie	. Géophysique (+ diagraphies)	. Sondages (+ analyse log. litho.)	. Cartographie hydrogéologique (affleurements) + photogéologie	Données (et techiniques d'acquisition)	Système aquifère
	0	0	0	0	0	0	00	w	2	2	w	Forme Structure (géométrie)	
	-	H	0	0	2	-	μw	0	—	2	۳	Forme Paramètres* (géométrie) K, T, n, K, S	Caractérisat
	0	0	0	0	N	w	0 2	۳	·	2			tion et modélisation
	2	w	2	w	0	w	00	2	0	0	8	Conditions aux limites impulsions	
	w	2	0	0	w	ω	00	0	0	0	0	Comportement réponses	-

	Inventaire des actions hûmaines (actuelles, historiques)
h = níveau Q = débít	. Prélèvements . Injections . Infiltrations (irrig.) . Changements de niveau
	0
*K perméabil T transmiss n porosité	0
lité Sivité K _V S	0
v perm. vertical emmagasinement.	w
cal.	0

·			

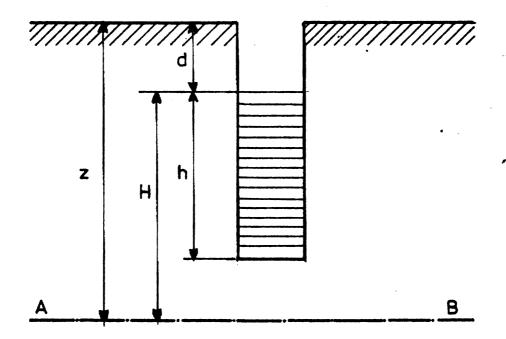


Fig. V-1 Niveau piézométrique d'une nappe libre.

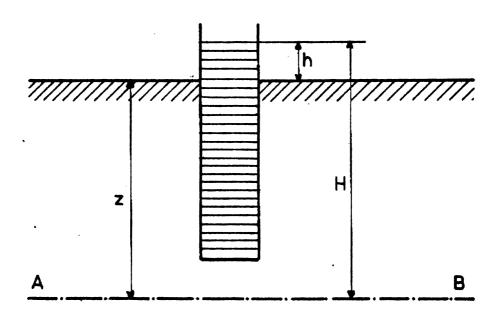
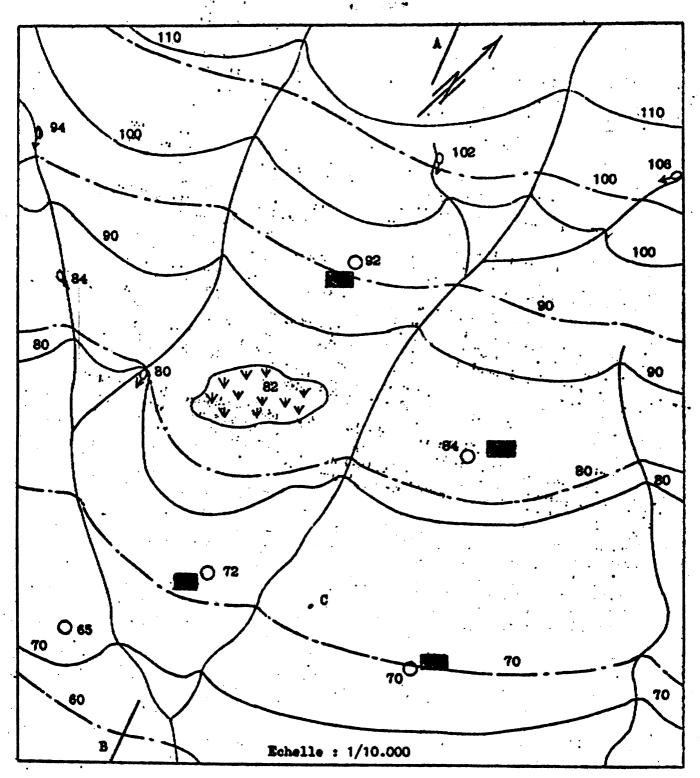
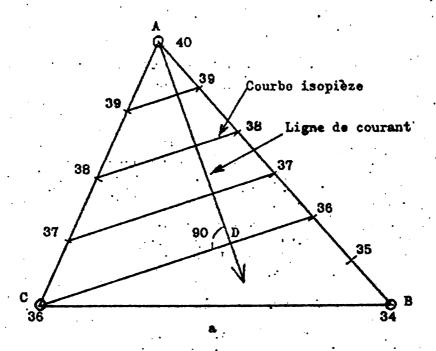




Fig. V-2 Niveau piézométrique d'une nappe captive.

Pig. V-3 - Etablissement d'une carte en courbes isopièses.

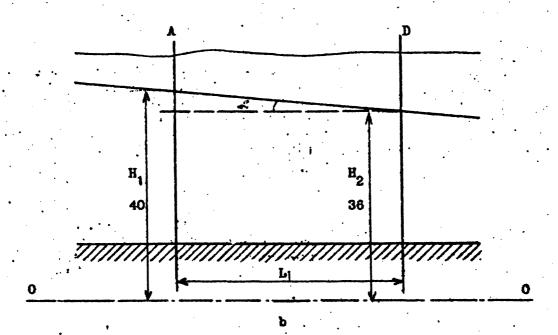
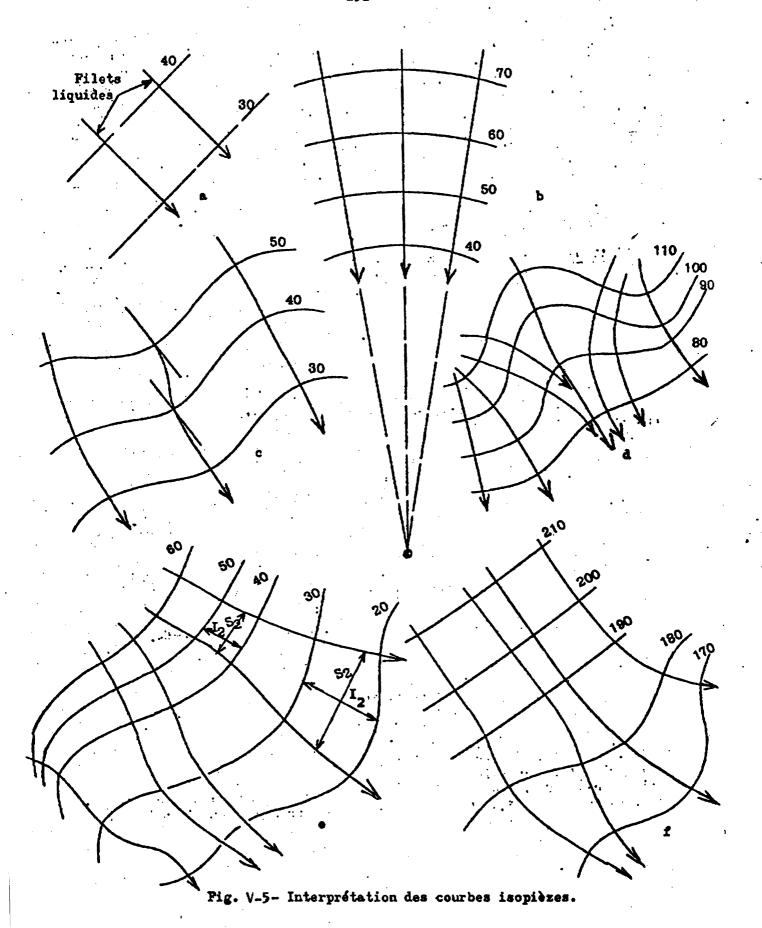
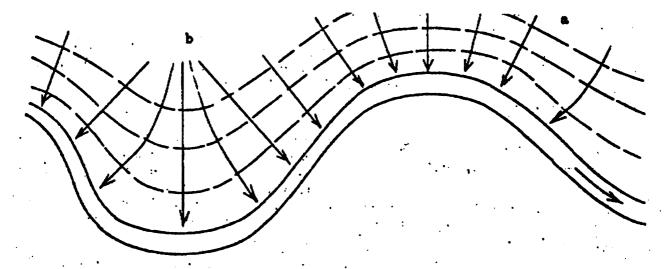




Fig. V.a

Détermination des lignes de courant et du gradient hydraulique.

,			

Pig. V-6- Courbes isopièzes de nappes à filets cenvergents (a) et divergents (b). Exemple d'une nappe de coteaux s'écoulant vers une rivière à faible pente.

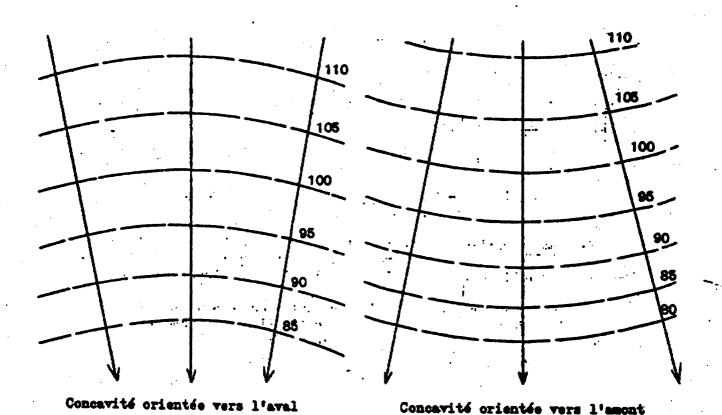


Fig. V-7 - Courbure des courbes isopièses.

a, zone d'alimentation ; b, zone de drainage.

4°.				
			·	
			·	

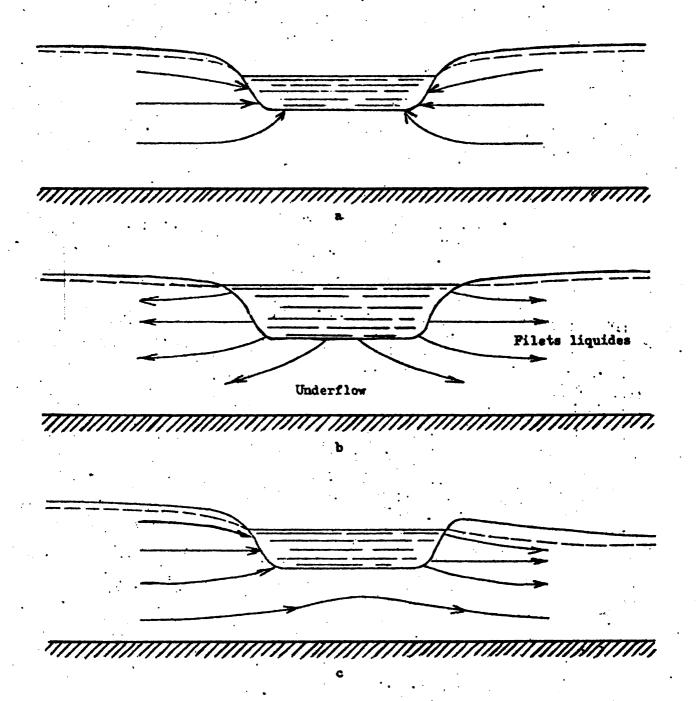
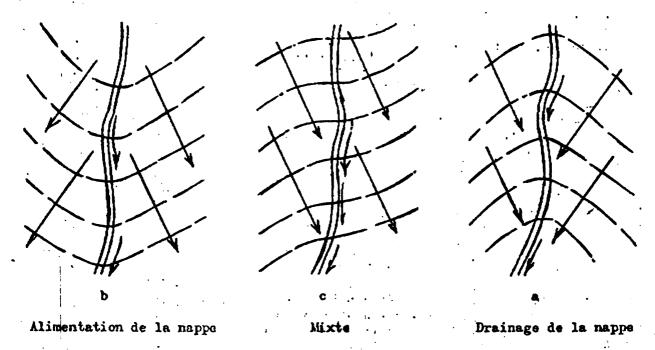


Fig. V-8 - Relations entre la nappe alluviale et la rivière.


Coupes schématiques.

a, drainage de la nappe par la rivière ; b, alimentation ; c, relations mixtes.

.

K. A. Com

t v

Pig. V_9 - Relations entre la nappe alluviale et la rivière.

Carte en courbes isopièzes.

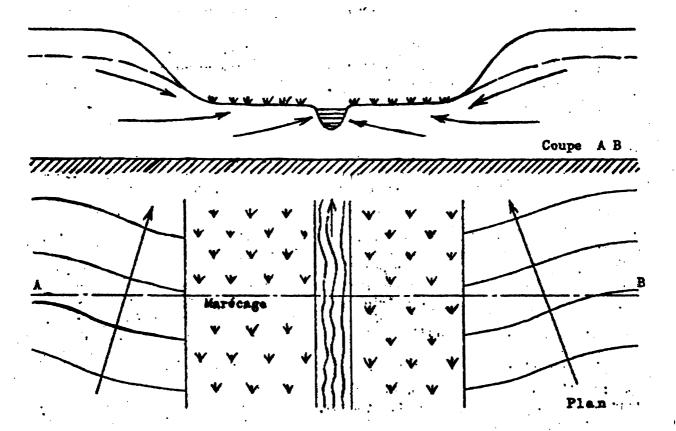


Fig. V-10 ' - Vallée plate. Apparition de marécages.

1			

SIXIEME PARTIE

POLLUTION DE L'EAU SOUTERRAINE

La pollution de l'eau souterraine est le risque permanent de limitation de la ressource en eau dans un proche avenir.

La pollution de l'eau résulte de l'activité humaine. Il faut donc exclure la détérioration naturelle sous l'action des agents géologiques.

Les normes de qualité de l'eau sont fixées en référence avec les exigences d'une demande d'utilisation

Le dégré de pollution de l'eau est apprécié par l'écart avec un bruit de fond géochimique.

L'action polluante d'une substance est déterminée par sa dose et le volume d'eau, véhicule de transport.

Le polluant, transporté et propagé par l'eau souterraine, subit une migration et une évolution dans l'espace souterraine. Les deux principales actions sont l'autoépuration naturelle et la dilution.

La vulnérabilité de l'eau souterraine à la pollution s'exprime par des cartes de vulnérabilité dont l'échelle est adaptée aux problèmes à résoudre.

La prévention est le seul moyen de lutte efficace contre la pollution de l'eau souterraine.

Tableau VI-I Normes de l'Organisation Mondiale de la Santé sur la potabilité de l'eau.

Substances	Teneurs limites maximums mg/l		
Minéralisation totale	1500		
Chlorures en CI	600		
Sulfates en SO 4	400		
Nitrates en N	10		
Nitrates en NO 3	44		
Magnésium	150		
Dureté 30 dégré français			
Micropolluants	trace		
Sélénium	0,05		
Plomb	0,1		
Fluorures en F	1		
Calcium	200		
Cuivre	1,5		
Fer en Fe	1,00		
Man gane'se	0,5		
Microrganisme pathogène	0		
Zinc	15		
Arsenic	0,5		

La qualification de la qualité de l'eau est spécifiée par référence à des normes de qualité, fixées par les exigences de la demande. Elle tient compte des caractéristiques spécifiques de l'utilisation, de critères économiques régionaux, etc. Par exemple, une eaux impropre à la boisson peut convenir à l'industrie ou à l'agriculture; les exigences sur la teneur en chlorures sont moins sévères en zone aride qu'en zone humide. Le concept de qualité doit être pris en considération par l'offre de l'hy-

·			
		•!	

6.1 Généralités:

L'eau souterraine est le réhicule de transport des substances minérales ou organiques ou des bactéries pathogènes. Par son mouvement dans toutes les zones du sol et du sous-sol, elle provoque la propagation des polluants, leur persistances ainsi que la pollution générale de l'espace souterraine.

Une eau est polluée lorsque, sous l'effet de l'activité humaine, elle devient impropre à satisfaire la demande d'utilisation ou qu'elle présente un danger pour l'environnement. Les causes naturelles de la dégradation de la qualité de l'eau souterraine sont donc exclues de ce concept. En effet, si cette définition était généralisée, la plupart des eaux minérales et thermales mériteraient le qualificatif de polluées.

Une eau souterraine renferme une teneur en substances minérales dissoutes d'origine naturelle géologique. C'est le bruit de fond des géochimistes. Le degré de pollution est apprécié par la mesure de l'écart en tre les caractéristiques physiques et chimiques de l'eau considérée, par référence au bruit de fond, local ou régional.

·		

drogéologue pour l'évaluation de la ressource en eau souterraine exploitable

6.1.1 Dose de polluant et fréquence des apports

Un polluant est un agent physique, une substance minérale ou bio-elogique, issus de l'activité humaine provoquant, sous une intensité ou une concentration anormales, une dégradation de la qualité de l'eau naturelle. Exemples: accroissement de la température par des rejets, forte teneur en nitrates dans les régions agricoles, métaux lourds dans les eaux des cours d'eau, etc.

Le pouvoir polluant d'une substance est déterminé par deux facteurs principaux:

- La dose d'introduction dans le milieu récepteur, déterminé par concentration dans l'eau et le volume d'eau en mouvement, véhicule de transport;
- La fréquence des apports, dont la répétition accroit les risques car les sédiments et les êtres vivants ont un effet cumulatif.

6.2- Princiapux types de polluants, toxicité

Le nombre des polluants est considérable. La société américaine de chimie en dénombre 4 millions, dont 70,000 suspects d'action cancérigène, en 1977. Il est donc impossible de les énumérer tous, d'autant plus que leur nombre croît sans cesse.

Les polluants peuvent être classés, selon leur nature, en quatre grandes catégories: physiques, chimiques, organiques et bactériologiques

· ·

(G. Gastany, 1978 et 1980). Il est nécessairé, en premier lieu, d'en dresser un catalogue fixant leur nature, leur dose néfaste et leur toxicité.

6.2.1- Polluants physiques

Les trois principaux agents physiques de la pollution sont: la chaleur, le transport de matière solides en suspension et la ràdioactivité.

La chaleur, par élévation de la température de l'eau, surtout de surface, provoque des effets écologiques sur la vie aquatique (Développement des microorganismes comme les algues).

Elle diminue la solubilité de l'oxigène, déficit renforcé par : l'accroissement de l'activité biologique qui en consomme.

Les matières solides en suspension sont introduites par les précipitations et les eaux de surfaces. Certaines particules, très petites de l'ordre du micron, peuvent ainsi transiter.

6.2.2 Polluants chimiques:

L'eau par son pouvoir dissolvant élevé, dissout les substances rejetées par l'activité humaine. Les polluants chimiques sont nombreux et d'origines diverses: Sels minéraux dissous, métaux lourds, pesticides, détergents et hydrocarbures. Métaux lourds, pesticides et détergents constituent les micropolluants.

6.2.2.1- Sels minéraux dissous:

Les plus nocifs sont les composés de l'azote , Nitrates (NO 3) et nitrites (NO 2). Ils provoquent des troubles graves chez les jeunes vertébrés par dégradation de l'hémoglobine du sang et production de matha-

e de la companya de l ı · émoglobinaemie des nourrissons). Ils peuvent provoquer l'hypertension et sont les précurseurs de nitrosamines cancérigènes. Non présents dans les formations géologiques ou très rares, les nitrates sont essentiellement d'origine agricole. Leur teneur maximum dans l'eau potable est fixée à 44 mg./l. Les sulfates et les chlorures sont naturellement présents dans l'eau souterraine (dissolution des sels minéraux des réservoirs). Les chlorures, par leur persistances dans tous les milieux, constituent d'excellents traceurs naturels. Leur teneur maximum dans l'eau potable est fixée à 250 mg/l.

6.2.2.2- Micropolluants: métaux lourds, pesticides et détergents:

Les micropolluants groupent des sustances toxiques à très faible teneur dans l'eau, de l'ordre du millionième de gramme (microgramme), voire du nanogramme (milliardième de gramme) par litre. Ils sont dangereux, même à l'état de traces, car la chaine alimentaire a un effet cumulatif. L'ingestion répétée des métaux lourds par l'homme provoque des stockages nocifs dans le squelette (plomb), les reins et le foie (cadmiun) ou les cellules nerveuses (mercure). Les plus dangerux sont: les cyanures très toxiques (rejets interdits), le mercure sous sa forme de composés solubes (dose mortelle: l à 2 g), le chrome cancérigène sous saforme polyvalente (chromates et bichromates), le plomb (saturnisme), le sélénium, l'arsenic et le cadmium (2g tuent un homme).

Leur teneur, à l'état de traces, est sévèrement réglémentée, même dans les eaux brutes de rivières utilisées par les stations de traitement. Le terme de pesticides groupe tous les produits de lutte contre les parasites des cultures et des animaux. Leur évolution dans le sol, aboutissant à des dérivés toxiques, est encore mal connue. Par suite du pouvoir autoépurateur du sol, la plupart d'entre eux sont rapidement éliminés, et les eaux souterraines en sont pratiquement dépourvues:

L'usage des détergents, d'apparition récente, est en accroissement considérable. Ils inhibent les processus d'autoépuration, limitent

le développement des microorganismes du sol, bloquent la réoxygénation. La fabrication de détergents biodégradables devrait supprimer cette source de pollution.

6.2.2.3 Hydrocarbures:

Les hydrocarbures, par suite de leur pouvoir de dilution, sont pernicieux à des doses très faibles. Une teneur de 1/10 000 à 1/100 000 en volume donne un gout désagréable à l'eau. Un litre d'essence suffit pour décrader entre 1 000 et 5 000 m³ d'eau.

6.2.2.4- Polluants organiques Microorganismes:

L'eau souterraine est le vecteur des microorganismes, pathogènes ou non. Le pouvoir autoépurateur du sol est très efficace. Pratiquement l'eau souterraine en est dépourvu dans les conditions naturelles. Un problème particulier est posé par les aquifères karstiques au sein desquels l'autoépuration naturelle est faible, voir nulle.

6.3 - Principales sources de pollution - Foyers de pollution:

La pollution de l'eau souterraine est provoquée par les rejets des activités domestiques et urbaines, agricoles ou industrielles, dont l'eau est le véhicule de transport et de dissémination idéal. D'où trois grandes sources pollutions: domestique et urbaine, agricole et industrielle.

6.3.1. Pollution d'origine domestique et urbaine:

Ce sont les rejets d'eaux usées domestiques et municipales) Lavage des rues, arrosages). Les eaux pluviales et les eaux utilisées pour la climatisation des immeubles. Les dépots d'ordures ménagères apportent leur lot de charge polluante.

t the second of

·· .

.

6.3.2.- Pollutions d'origine agricole

Les pollutions agricoles sont causées principalement par l'utilisation irrationnelle des engrais chimiques et des pesticides.

6.3.3. Pollutions d'origine industrielle

Elles sont provoquées par les rejets industriels, thermiques et chimiques.

6.4- Mécanisme et facteurs de la pollution de l'eau souterraine

Le transport des polluants et leur évolution dans le sol et le sous-sol, sont déterminés par les trois comportements de l'aquifère: hydrodynamique, hydrochimique et hydrobiologique. Leur connaissance est essentielle. La protection de l'eau souterraine contre la pollution repose sur des études et essais, en laboratoire et sur le terrain, des mécanismes et des facteurs de contamination. La propagation et l'évolution des polluants, de la surface du sol aux lieux d'utilisation, s'effectue en quatre étapes (fig:IV.1):

- Introduction du polluant dans le sol: impacts et création de foyers de pollution (par l'intermédiaire de fosses pui sards, dépot d'ordure, etc...)
- Migration et évolution du polluant en zone non saturée. Mécanismes de l'autoépuration autour de 60 jours pour les micros organismes dans le sol.
- Propagation et évolution du polluant dans l'aquifère. Mécanismes de la dilution (reste sans jours conigues)
- Persistance de la pollution. Rémanence et techniques de décontamination (peut persister plusieurs mois voire année).

Introduction du polluant dans le sol - Impacts et foyers de pollution:

La surface du sol est une zone d'échanges atmosphère/sol. L'introduction de polluants crée des foyers de pollution par épandages à la surface du sol ou enfouissement à des profondeurs plus ou moins grandes, souvent la vitesse de déplacement du soluté est différente de celle de l'écoulement de l'eau souterraine, le polluant ayant une vitesse spécifique (exemple des pesticides).

6.5- Vulnérable des nappes à la pollution cartographie:

La vulnérable des nappes à la pollution est leur sensibilité aux différents facteurs physiques stables déterminant la mesure où elles sont, dans les conditions naturelles, plus ou moins exposées à la pollution à partir de la surface du sol. Elle étudie les possibilités de propagation dans l'espace souterrain.

Celle-ci est, en premier lieu, liée à l'autoépuration naturelle du sol, donc à la présence de conditions indispensables à son action. En second lieu, elle est favorisée par la circulation de l'eau.

6.5.1- Facteurs de la vulnérabilité:

Les facteurs de la vulnérabilité sont imposés par les recherches exposées précédemment. Ce sont donc:

- Etat et caractéristiques physiques et chimiques du sol et du sous-sol. Le facteur principal est la lithologie;
- Profondeur de la surface piézométrique, laquelle impose le temps de séjour en zone non saturée;

- Paramètres de l'écoulement de l'eau souterraine: coefficient de perméabilité ou transmissivité, direction et vitesse de déplacement (à défaut vitesse effective):
- Conditions d'alimentation et d'écoulement, facteurs du renouvellement de la réserve totale moyenne.

6.5.2 - Cartes de la vulnérabilité:

La vulnérabilité s'exprime par des cartes. Elles sont dressées, à différentes échelles, adaptées aux utilisations: 1/1 000 000, 1/250 000, 1/50 000, parfois plus grandes pour des problèmes spécifiques.

- La prévention par la localisation des zones sensibles dans lesquelles une pollution peut affecter gravement l'eau souterraine, la définition de la propagation des polluants et la situation de s'foyers de contamination actifs ou potentiels; (zone S.W. du PCS).
- La protection par mise en place d'aménagements spéciaux (étanchéite des stockages et des canalisations de surface et souterrains, collecte des effluents, etc...) de périmètre de protection des eaux souterraines captées et des réseaux de qualité.

6.6- Lutte contre la pollution de l'eau souterraine

La protection de l'eau souterraine contre la pollution, laquelle s'intègre dans la préservation du milieu souterrain, poursuit trois objectifs:

- La prévention, assurée en priorité par une réglementation,

. .

basée sur des recherches et expérimentations:

- Elle consiste en la protection des secteurs et la mise en place de périmètre de protection:

P PI = Périmètre de protection immédiate (50 à 100 m)

P PR = Périmètre de protection rapprochée

P PE = Périmètre de protection éloignée liée à la géologie

- La détection ou le contrôle par des réseaux de surveillance de la qualité de l'eau souterraine;
- La parade par des moyens techniques appropriés et la décontamination très difficile dans l'état des techniques actuelles.

Ces trois actions nécessitent la prévision de la migration et de l'évolution des polluants dans le sol et dans le sous-sol. L'étude du comportement des polluants au cours de leur migration dans le circuit atmosphère/sol/aquifère/écoulement, permet de déceler l'origine des contaminations et de prévoir leur évolution, donc mettre en œuvre une prévention. L'outil le mieux adapté à la prévision, techniquement et économiquement, est le modèle mathématique de simulation hydro-dynamique et hydrochimique.

En conclusion, la décontamination étant très difficile, il faut agir en priorité sur la prévention contre la pollution de l'eau souterraine.

•				·	
		·	·		
			·		

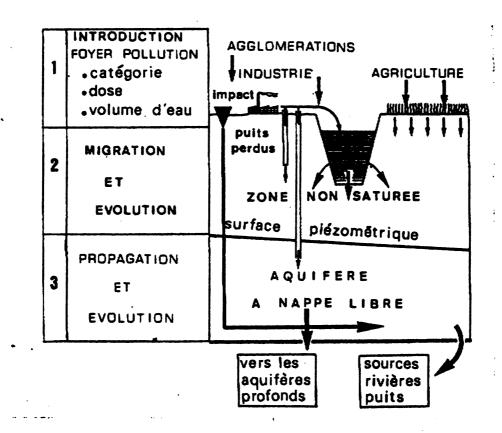
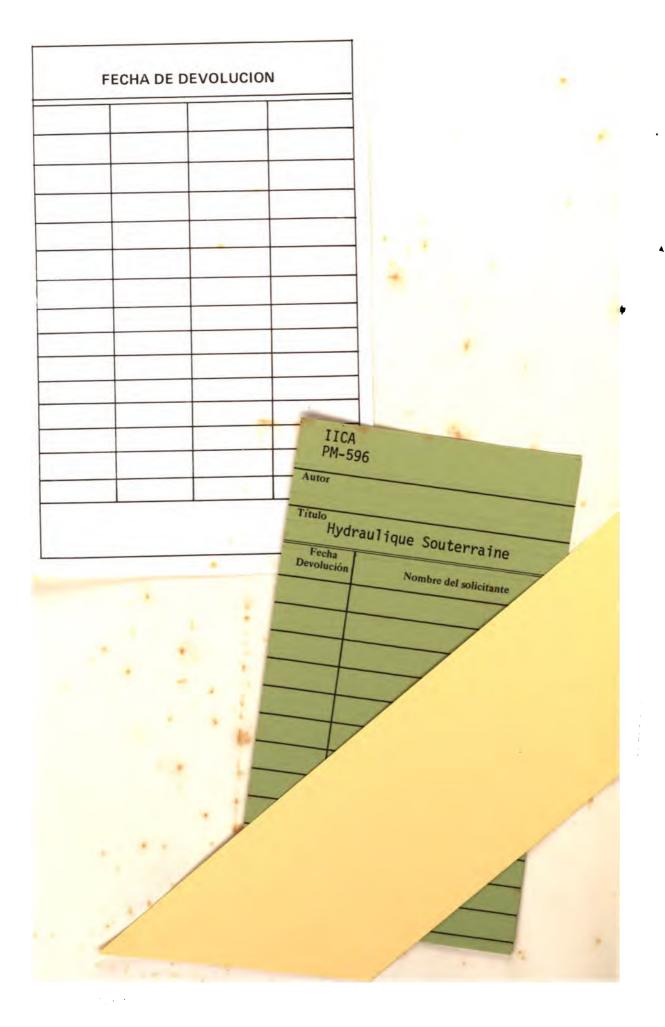



Fig. VI-1 Origine, transport et évolution des polluants, de la surface du sol aux écoulements. La migration et l'évolution de la pollution s'effectuent en trois étapes: l, introduction et foyers de pollution; 2, migration et évolution en zone non saturée; 3, propagation et évolution dans l'aquifère.

. .

DOCUMENTO MICROFILMADO

echa: 19 ENE 1900

