PROYECTO DE ZONIFICACION ECOLOGICA DE LOS CULTIVOS DE CONSUMO BASICO Y TRADICIONALES DE EXPORTACION DE LA REPUBLICA DE PANAMA EN CONDICIONES DE SECANO

MINISTERIO DE AGRICULTURA Y GANADERIA
PANAMA, PANAMA

INSTITUTO INTERAMERICANO DE CIENCIAS AGRICOLAS DE LA OEA CENTRO TROPICAL DE ENSEÑANZA E INVESTIGACION TURRIALBA, COSTA RICA

DIRECCION REGIONAL PARA LA ZONA NORTE GUATEMALA, GUATEMALA

DOCUMENTO PRELIMINAR
PROYECTO DE ZONIFICACION ECOLOGICA
DE LOS CULTIVOS DE CONSUMO BASICO
Y TRADICIONALES DE EXPORTACION
DE LA REPUBLICA DE PANAMA
EN CONDICIONES DE SECANO

1a. Impresión
Turrialba, Costa Rica
Diciembre, 1971

2a. Impresión
Panamá
Agosto, 1973
PERSONAL QUE PARTICIPO EN EL PROYECTO

Profesional

Dr. J. M. Montoya Maquin*
Ecólogo, Responsable del Proyecto

Ing. Javier García Benavides**
Agroclimatólogo

Ing. For. Irving Díaz***
Especialista en Uso de la Tierra

Auxiliar

Sr. Emilio Ortiz Cordero**
Dibujante Cartógrafo

Sr. Jorge Montoya Arce*
Calculista

Sr. Victor Villalobos*
Calculista

Sr. Omar Romero**
Compilador bibliográfico

* Financiado con fondos regulares del Centro Tropical de Enseñanza e Investigación del Instituto Interamericano de Ciencias Agrícolas de la OEA.

** Financiado con fondos del Acuerdo de Zonificación Ecológica de Cultivos firmado entre el Ministerio de Agricultura y Ganadería de Panamá y el Instituto Interamericano de Ciencias Agrícolas, y de otros Proyectos de Zonificación de Cultivos de la Dirección Regional de la Zona Norte del IICA.

*** Personal del Ministerio de Agricultura y Ganadería de Panamá, en Entrenamiento en Servicio, durante la ejecución del Proyecto, actuó como contraparte panameña.
INDICE

1. Antecedentes del Proyecto... 1

2. Justificación de la zonificación ecológica de cultivos................................. 2

3. La naturaleza de las zonificaciones ecológicas de cultivos.............................. 4

4. Antecedentes de zonificación ecológica de cultivos en el trópico.............................. 10

5. Esquema metodológico empleado en el Proyecto.. 11
 5.1. Primera etapa: Definición de los requerimientos agroecológicos de los cultivos................................. 12
 5.2. Segunda etapa: Estimación de diversos elementos meteorológicos para el área en estudio................................. 13
 5.3. Tercera etapa: Análisis agroclimático... 14
 5.4. Cuarta etapa: Análisis de variable fisio-edáficas.. 15
 5.5. Quinta etapa: Elaboración de mapas factoriales......................... 16
 5.6. Sexta etapa: Síntesis cartográfica sucesiva............................ 17
 5.7. Séptima etapa: Elaboración de mapas e informes finales............................... 17

6. Aplicación del método de zonificación en el Proyecto.. 18
 6.1. Primera etapa: Definición de los requerimientos agroecológicos de los cultivos................................. 19
 6.1.1. Requerimientos térmicos.. 19
 6.1.2. Requerimientos hídricos.. 20
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.</td>
<td>Segunda etapa: Estimación de diversos elementos meteorológicos para el área en estudio</td>
<td>26</td>
</tr>
<tr>
<td>6.3.</td>
<td>Tercera etapa: Análisis agroclimático</td>
<td>27</td>
</tr>
<tr>
<td>6.4.</td>
<td>Cuarta etapa: Análisis de variable fisiocéntricas</td>
<td>31</td>
</tr>
<tr>
<td>6.5.</td>
<td>Quinta etapa: Elaboración de mapas factoriales</td>
<td>32</td>
</tr>
<tr>
<td>6.6.</td>
<td>Sexta etapa: Síntesis cartográfica sucesiva</td>
<td>34</td>
</tr>
<tr>
<td>6.7.</td>
<td>Sétima etapa: Elaboración de mapas e informes finales</td>
<td>34</td>
</tr>
<tr>
<td>7.</td>
<td>Comentarios Finales</td>
<td>47</td>
</tr>
<tr>
<td>7.1.</td>
<td>Sobre el grado de confianza de las zonificaciones</td>
<td>47</td>
</tr>
<tr>
<td>7.2.</td>
<td>Sobre las limitaciones de utilización de las zonificaciones</td>
<td>48</td>
</tr>
<tr>
<td>8.</td>
<td>Literatura citada</td>
<td>49</td>
</tr>
<tr>
<td>CUADRO N°</td>
<td>Descripción</td>
<td>Página</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Indice térmicos considerados en el proyecto expresados en grados centígrados</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Indices hídricos empleados para la zonificación de cultivos de ajonjoli en Panamá</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Indices hídricos empleados para la zonificación del cultivo de algodón en Panamá</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Indices hídricos empleados para la zonificación del cultivo de arroz en Panamá</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Indices hídricos empleados para la zonificación del cultivo de banano en Panamá</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Indices hídricos empleados para la zonificación del cultivo de cacao en Panamá</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Indices hídricos empleados para la zonificación del cultivo de café en Panamá</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>Indices hídricos empleados para la zonificación del cultivo del maíz en Panamá</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>Indices hídricos empleados para la zonificación del maní en Panamá</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>Indices hídricos empleados para la zonificación del cultivo de palma africana en Panamá</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>Indices hídricos empleados para la zonificación del cultivo del poroto en Panamá</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>Ecuaciones de estimación térmica mensual para Panamá</td>
<td>27</td>
</tr>
<tr>
<td>13</td>
<td>Ejemplo de balance hidrológico mensual</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>Transformación de las unidades de uso potencial de la tierra en categorías fisiocldácicas, empleadas para la zonificación ecológica de cultivos en Panamá</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>Jerarquización de las unidades de zonificación para el cultivo de ajonjolí, y superficie encontrada para su cultivo en Panamá. (En miles de hectáreas)</td>
<td>36</td>
</tr>
<tr>
<td>CUADRO N°</td>
<td>Descripción</td>
<td>Página</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>16</td>
<td>Jerarquización de las unidades de zonificación para el cultivo del algodón, y superficie encontrada para su cultivo en Panamá. (miles de hectáreas)</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>Jerarquización de las unidades de zonificación para el cultivo del arroz, y superficie encontrada para su cultivo en Panamá</td>
<td>38</td>
</tr>
<tr>
<td>18</td>
<td>Jerarquización de las unidades de zonificación para el cultivo del banano, y superficie encontrada para su cultivo en Panamá. (miles de hectáreas)</td>
<td>39</td>
</tr>
<tr>
<td>19</td>
<td>Jerarquización de las unidades de zonificación para el cultivo del cacao, y superficie encontrada para su cultivo en Panamá. (miles de hectáreas)</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>Jerarquización de las unidades de zonificación para el cultivo del café, y superficie encontrada para su cultivo en Panamá. (miles de hectáreas)</td>
<td>41</td>
</tr>
<tr>
<td>21</td>
<td>Jerarquización de las unidades de zonificación para el cultivo del maíz, y superficie encontrada para su cultivo en Panamá (miles de hectáreas)</td>
<td>42</td>
</tr>
<tr>
<td>22</td>
<td>Jerarquización de las unidades de zonificación para el cultivo del maíz, y área encontrada para su cultivo en Panamá. (miles de hectáreas)</td>
<td>43</td>
</tr>
<tr>
<td>23</td>
<td>Jerarquización de las unidades de zonificación para el cultivo de palma aceitera, y superficie encontrada para su cultivo en Panamá. (miles de hectáreas)</td>
<td>44</td>
</tr>
<tr>
<td>24</td>
<td>Jerarquización de las unidades de zonificación para el cultivo del poroto (Phaseolus vulgaris), y superficie encontrada para su cultivo en Panamá. (miles de hectáreas)</td>
<td>45</td>
</tr>
<tr>
<td>25</td>
<td>Porcentaje de área zonificada correspondiente a cada una de las categorías, para los 10 cultivos considerados en el Proyecto.</td>
<td>46</td>
</tr>
</tbody>
</table>
ZONIFICACION ECOLOGICA DE LOS CULTIVOS DE CONSUMO BASICO Y TRADICIONALES DE EXPORTACION DE LA REPUBLICA DE PANAMA, EN CONDICIONES DE SECANO

1. Antecedentes del Proyecto

Los diversos programas y proyectos, para la consolida-ción y expansión del cultivo de diversos productos agrícolas de consumo básico así como tradicionales de exportación, que está fomentando el Gobierno de la República de Panamá, por intermedio de su Ministerio de Agricultura y Ganadería y de otras entes autónomas, así como la inminencia de la puesta en ejecución del Plan Nacional de Investigación y Extensión Agropecuaria, hizo que el Gobierno de Panamá, por intermedio del Ministerio de Agricultura y Ganadería, solicitara asisten-cia técnica a la Dirección Regional para la Zona Norte del IICA, para llevar a cabo un Proyecto de Zonificación Ecológica de Cultivos.

Por medio de la aceptación del Gobierno de Panamá y de la Dirección Regional para la Zona Norte del IICA del documen-to titulado "Acuerdo de Operaciones y Términos de Referencia para la Ejecución del Proyecto de Zonificación de Cultivos Bá-sicos de Panamá", se dio inicio al Proyecto el 1 de febrero de 1971.

Los objetivos del Proyecto fueron los de ofrecer a las autoridades panameñas una referencia biofísica sobre las áreas del país ecológicamente más adecuadas para la producción de los cultivos. Por otra parte esta zonificación agroecológica permitiría la ubicación geográfica de las zonas del territorio panameño donde se localizarían las áreas de trabajo previstas en el Plan Nacional de Investigación y Extensión Agropecuaria, además de ofrecer un marco geográfico para el desarrollo de otras actividades del sector agropecuario, como son las de fo-mento, lo cual facilitaría la adopción y coordinación de la po-lítica agropecuaria Nacional.
Por otra parte este Proyecto cristaliza el interés que, desde el año 1969, el Ministerio de Agricultura y Ganadería manifestó en la obtención de este tipo de información*, además de permitir un mayor acercamiento a la política agropecuaria de integración regional que el Mercado Común Centroamericano, por intermedio de sus organismos especializados está desarrollando en estas mismas líneas**.

2. Justificación de la zonificación ecológica de cultivos

Para justificar la zonificación ecológica de cultivos bastará hacer un simple análisis de algunas necesidades que se encuentran en el contexto de la elaboración de planes y proyectos de desarrollo agropecuario, en sus niveles regional, nacional, o de área específica.

La motivación y el punto de partida en un primer caso, se puede encontrar cuando, a nivel de un país o de una región, los economistas establecen cuáles son los productos agropecuarios que se encuentran deficitarios para el consumo local o regional, o se establecen mediante el análisis de los mercados internacionales cuáles son los productos que tienen buenas perspectivas de exportación.

* Con el patrocinio del Ministerio de Agricultura y Ganadería y la Dirección Regional para la Zona Norte del IICA, el Dr. J. M. Montoya Maquín, hizo dos viajes de asesoría en zonificación de cultivos, a Panamá, y organizó el Primer Curso Nacional sobre zonificación Ecológica de Cultivos, en el cual participaron 10 técnicos panameños.

** La Secretaría General del Tratado de Integración de Centroamérica (SIECA) y el IICA, firmaron un acuerdo para llevar a cabo para los países del Mercado Común Centroamericano un proyecto de Zonificación Ecológica de Cultivos que contempla los mismos cultivos que se zonificaron en este Proyecto para Panamá.
Como resultado de este diagnóstico de mercados, se pueden elaborar listas de productos que tienen buenas perspectivas económicas para una expansión. Sin embargo, no basta el establecimiento de esta lista de cultivos para poder hacer planes de fomento; la primera interrogante que se plantearán los planificadores será sobre la localización de las áreas en el territorio en el que están trabajando, que tengan condiciones ecológicas adecuadas para estos cultivos; así se podrán formular las directivas necesarias para alcanzar las metas de expansión con un máximo de seguridad y, por lo tanto, garantizando un retorno de las inversiones a realizarse.

Un segundo caso se refiere a planes de desarrollo en áreas específicas, en los cuales si bien se conoce que el objetivo general es el desarrollo, las metas específicas están por definirse. Para alcanzar dichas metas es necesario determinar cuáles son los cultivos que tienen las mejores perspectivas ecológicas, en función de los recursos biofísicos disponibles en el área. De esta forma la zonificación ecológica de cultivos dará como resultado a los planificadores, la lista de los cultivos ecológicamente factibles, así como la localización de los espacios geográficos con recursos ecológicos adecuados para cada uno de ellos. Posteriormente, estudios referentes a mercados de los productos señalados así como el análisis de los costos de producción, darán al planificador los criterios necesarios para la toma definitiva de decisiones relativas a que cultivo fomentar.

Es necesario señalar que las decisiones relativas al fomento de un cultivo, ya sea en los niveles de área, nación o región, implican una serie de acciones coordinadas, como son las de investigación, extensión y crédito. Estas acciones, para alcanzar éxito, también deberán ser establecidas en función de las áreas que tengan aptitudes ecológicas para el desarrollo de un cultivo, y cuya factibilidad económica haya sido establecida.
Resumiendo los párrafos anteriores, la zonificación ecológica de cultivos ofrecerá al planificador dos tipos de información de importancia primordial para el establecimiento de planes y proyectos de fomento; éstas son las siguientes:

- Localización en el territorio de trabajo de las diversas áreas alternativas para cada cultivo considerado, y
- La lista de cultivos alternativos para cada área que se desee considerar.

La necesidad de disponer la localización de unidades de territorio aptas para cada cultivo, así como los diversos cultivos que pueden establecerse con éxito en un área determinada, es la que ha motivado que diversas instituciones panameñas tomen un interés muy grande en el establecimiento de estudios de zonificación de cultivos en sus áreas de influencia.

En el caso específico de este Proyecto, la zonificación ecológica de cultivos dará las pautas necesarias para la ejecución de sus diversos planes nacionales de investigación, extensión y fomento agrícola; es decir, la zonificación aportará una serie de documentos de primera importancia para la toma de decisiones relacionadas con la localización y concentración de esfuerzos representados por los proyectos específicos de desarrollo agrícola.

3. La naturaleza de las zonificaciones ecológicas de cultivos

Con el establecimiento de las bases científicas para el estudio de las relaciones entre los componentes meteorológicos y pedológicos con los rendimientos de los cultivos y su comportamiento, entramos en el campo de la ecología agrícola. La agrometeorología es la disciplina que relaciona el clima y sus elementos con el desarrollo de las plantas cultivadas. De esta manera la ecología agrícola necesita del conocimiento de la agroclimato-
logía y la integración de ella en la investigación de problemas del complejo ambiental, simplificará la solución definitiva. En cierto modo, para hacer ecología agrícola debemos transitar en algunos temas por el campo de la agroclimatología, teniendo ésta capítulo de su dominio propio y exclusivo, como son aquellos derivados del conocimiento de las ciencias atmosféricas y su aplicación en el agro en general (estadísticas, factores atmosféricos, previsión, lucha contra heladas, pronósticos, etc.).

Uno de los objetivos de la ecología agraria es la de efectuar zonificaciones que permitan definir las áreas aptas para el desarrollo de los cultivos. Esta zonificación puede hacerse a un nivel general para una especie y a un nivel más detallado para variedades de esa especie.

En países o regiones tradicionalmente agrícolas y con larga historia, la zonificación a nivel general no tiene sentido ya que ha sido lograda por la experiencia secular; a veces tampoco tendría sentido incluso zonificar a nivel de variedades. En las grandes áreas tropicales prácticamente deshabitadas, la zonificación no sólo es posible realizarla sino que es necesaria: equivalentría a un inventario de los recursos en función de su aprovechamiento para el uso de los cultivos.

Una zonificación que trate de ser precisa es compleja. A pesar de la importancia que reviste ella, son pocos los intentos realizados, a nivel tropical, que se basen en estudios detallados bajo el punto de vista agroclimático.

No cabe duda que la integración del factor clima con el factor suelo es capaz de definir situaciones que nos permitan dilucidar cuál área es más conveniente para el desarrollo de los cultivos, y si tratamos de considerar también cada cultivo por separado teniendo en cuenta sus exigencias específicas, el resultado será mejor.
Para Azzi (3) el concepto fundamental que constituye la base de la climatología agrícola es precisamente el de los equivalentes meteorológicos, los cuales se explicarán más adelante. Su adopción no simplifica solamente los problemas bioclimáticos, sino que aclara situaciones complejas antes difíciles de solucionar. La simple relación de los elementos climáticos puros con el desarrollo de las plantas no soluciona tampoco prácticamente nada. Debemos en este caso abandonar el concepto de clima y tomar el de agroclima. Según Burgos (4), agroclima sería el conjunto de condiciones climáticas principales, determinantes de otras que son su consecuencia en sus valores de intensidad, duración y frecuencia y época, que posibilitan el cultivo económico de una especie determinada. Este concepto no implica el de clima, ya que dos localidades de clima diferente pueden tener el mismo agroclima, o que climas generales muy parecidos pueden provocar condiciones agroclimáticas distintas para un mismo cultivo.

Se tiene que determinar fundamentalmente los tipos agroclimáticos de los cultivos, los cuales están íntimamente ligados a los equivalentes meteorológicos. Estos equivalentes se refieren, por ejemplo, a los grados de temperatura y los milímetros de lluvia que separan las situaciones normales de las anormales y que son sin duda alguna individuales para cada cultivo. Convenía mejor llamar los índices agroclimáticos ya que cuantifican el fenómeno meteorológico y lo relacionan con cada planta en particular.

La zonificación agroclimática la representa Azzi (3) como zonas fisiográficas; es decir, el conjunto de las localidades que presentan el mismo cuadro climatológico en relación con una determinada especie vegetal. La zona fisiográfica que es mejor llamada agroclimática reune en una sola área, sea continua o discontinua, todos los puntos que presentan las mismas características atmosféricas en relación con un cultivo dado y sirve de orien-
tación para coordinar las actividades que tienden a una adaptación más perfecta del cultivo al ambiente y a mejorar este último; así, y gracias a la zonificación agroclimática, nos vemos ayudados y guiados en la elección de las medidas agrotécnicas y prácticas agronómicas adecuadas para disminuir la acción desfavorable de los factores ambientales. De la misma manera, al efectuar el balance de años de cosecha negativas y rendidoras, se puede obtener la pauta a seguir, genéticamente hablando, para combinar los caracteres de producción y resistencia que aseguren buenos rendimientos. La planificación económica usa la mejor o peor conveniencia de implantar un cultivo.

Los elementos climatológicos analizados, tendientes a ubicar las áreas climáticas, pueden ser puros o específicos; es decir, según representemos el elemento climatológico en forma normal o tradicional o trabajemos con índices agroclimáticos. Así la representación de las temperaturas medias (isotermas) o de las precipitaciones totales (isoyetas) serán índices climáticos que, si bien pueden usarse en las zonificaciones, su resultado es deficiente (29), el uso de valores como sumatoria de las temperaturas por encima de 12,8 °C, que sería el cero biológico de las cítricas o la magnitud de exceso o la deficiencia de agua en el suelo referidas a un cultivo, son índices agroclimáticos que nos proporcionan los elementos de juicio para ser más precisos y trabajar con mayor rigor científico.

La pretensión de extender la aplicación de las clasificaciones climáticas a los problemas prácticos de la agricultura, tratando de conocer por analogía de tipos climáticos la aptitud climática de una región para el desarrollo de un cultivo o especie forestal, es injustificada ya que consideran dos o más elementos del clima y sus valores son limitados en su expresión (medias anuales y a veces mensuales), así como un reducido número de jerarquías. Muchos son los trabajos de aplicación agrícola o forestal en los cuales para probar la aptitud de una localidad, se re-
fier al tipo climático que le corresponde, según alguna de las clasificaciones climáticas tradicionales. El fracaso de estas aplicaciones directas a problemas biológicos movió el interés de algunos autores para tratar de introducir modificaciones a aquellas clasificaciones; es decir, trataron de lograr clasificaciones climáticas que sirvieron para apreciar las posibilidades agrícolas, afinando las jerarquías para así poder tener resultados prácticos. Como ejemplo de este grupo podemos mencionar a Papadakis (28) y De Fina, et al. (7); este último realizó amplios estudios para ubicar cultivos índices en la República Argentina relacionándolos con los elementos del tiempo y otros del complejo ambiental. Ellos definen sus tipos con índices climáticos fijos ordenados sistemáticamente, atribuyéndoles una mejor o peor significación agrícola. Papadakis (28) trata de tipificar el régimen térmico en su amplitud anual, para ello se utiliza como parámetro característico del invierno, la temperatura mínima media anual. Los tipos estivales se definen según la temperatura media del mes más cálido.

Las regiones hídricas en este caso se establecen por medio de un índice hídrico, derivado del déficit de saturación del aire y que equivale a la suma de los índices mensuales. Podemos observar que con este tipo de clasificaciones se pretende definir tipos climáticos que tienen la misma aptitud agrícola, ya sea usando parámetros meteorológicos o índices agroclimáticos. Teóricamente, a cada unidad resultante le corresponderá los mismos cultivos posibles. Sin embargo, esto en la práctica resulta difícil realizar por diferentes exigencias meteorológicas de los cultivos, su distinta modalidad, etc.; la agricultura es un conjunto multiforme de prácticas, cultivos y circunstancias que es difícil ubicar dentro de un esquema rígido. Por esta circunstancia, cuando el interés de algunos autores fue el de determinar la aptitud climática para algún cultivo específico, se originaron trabajos de mayor precisión; así, en el caso de Azzi (3) podemos
decir que al trabajar con los equivalentes meteorológicos fue más preciso y salió antes a la luz que otras clasificaciones con usos dudosos en lo que respecta a zonificaciones agroclimáticas.

Al abandonar la idea de pretender definir unidades climáticas de igual aptitud agrícola y pretender de manera sistemática determinar los tipos agroclimáticos de los cultivos individuales entramos en el campo de la moderna agroclimatología, desechando para estos fines el concepto de clima y tomando el de agroclima ya estudiado anteriormente.

Burgos realizó determinaciones de tipos agroclimáticos en diversos cultivos (4, 6). García (9, 10, 11) realizó determinaciones siguiendo la misma pauta anterior y esbozó una metodología para ubicar mejor en el espacio y en el tiempo los cultivos anuales.

Varios investigadores trabajan en estudios bioclimáticos y agroclimáticos donde podemos citar a Pascale y Damario (30). Tenemos entonces bien clara, hasta aquí, la zonificación agroclimatónica y sus distintas categorías dentro de una jerarquía de precisión, así como el conocimiento de Azzi (3), como creador de muchas ideas que modernizadas están todavía en boga. Para llegar a la zonificación ecológica de cultivos se deberá incluir otro grupo de factores del medio ambiente. De esta manera es como el factor edáfico junto con el climático integrarán el conocimiento necesario para poder ubicar en el espacio geográfico las áreas potenciales para el desarrollo de cultivos específicos.

En ecología agrícola se distinguirá un suelo de otro, por su especial comportamiento con respecto a cada cultivo. Tal comportamiento se mide por el rendimiento de las plantas cultivadas. La integración entonces del factor edáfico con el climático, podrá ser considerada como una síntesis del medio ambiente y por consiguiente una zonificación ecológica.
4. Antecedentes de zonificación ecológica de cultivos en el trópico

Como se indicó anteriormente, existe poca experiencia en el mundo sobre zonificación ecológica de cultivos en el medio tropical. Entre los esfuerzos se puede mencionar el que llevó a cabo Papadakis (29) en el Oeste de África (Costa de Marfil, Dahomey, Ghana, Liberia, Nigeria y Togo), este es un trabajo bastante generalizado y basado en un análisis agroclimático y edáfico simple.

En América Tropical se pueden señalar los trabajos que realizó con anterioridad el Instituto Interamericano de Ciencias Agrícolas (22) para el área centroamericana y los de Aguirre y Salas (2) para frijol en el Istmo Centroamericano. Estos estudios, si bien alcanzaron una expresión cartográfica de síntesis, son altamente criticables ya que consideran en el análisis variables climáticas y no agroclimáticas, que sería lo recomendable.

Algunos geógrafos brasileños como Maricato (20, 21) y Dos Santos (8) trataron de llegar a zonificaciones de cultivos mediante la determinación de fitoclimogramas, desgraciadamente los ensayos de expresión cartográfica son extremadamente deficientes. Estos ensayos corresponden a cultivos como cacao, caña de azúcar, coco y tabaco, entre otros, y el espacio geográfico considerado fue el Brasil.

Otro aporte significativo realizado en beneficio de la zonificación ecológica de cultivos en el trópico americano es el conjunto de trabajos que se han llevado a cabo en Venezuela, aplicando el moderno concepto agroclimático para la definición de tipos agroclimáticos para un grupo de cultivos tropicales. Este esfuerzo es consecuencia del Seminario Regional de Agroclimatología que se llevó a cabo en Maracay, Venezuela, en 1961-62. Entre estos estudios se pueden señalar los de Burgos y Reyes para cacao (5), los de García para café (9), cítricos (11) y frijol (10), el de García y Montaldo para yuca (14), el de García y Sánchez para palma datilera (17) y el de García et al para ajonjoli (13). Como
se indicó anteriormente, estos estudios permitieron definir índices agroclimáticos para los cultivos específicos, a los cuales se adicionó diversos mapas factoriales correspondientes a los valores indicados por los índices. En estos casos no se llegó a la elaboración de una síntesis de los mapas factoriales ni se incluyó ningún factor edáfico.

Las más recientes contribuciones relativas a la zonificación ecológica de cultivos en zonas tropicales, corresponden a los proyectos que el Instituto Interamericano de Ciencias Agrícolas está llevando a cabo para los países del Mercado Común Centroamericano (19). En recientes comunicaciones (19, 24) se presenta el esquema metodológico empleado en las zonificaciones. Este esquema incluye entre sus etapas, un análisis agroclimático detallado, la inclusión de variables edáficas, y una expresión cartográfica final que sintetiza todas las variables empleadas, llegándose así a delimitarse en el espacio geográfico, las áreas con potencial ecológico para el cultivo que se desee estudiar.

. **Esquema metodológico empleado en el Proyecto**

El esquema desarrollado por el Instituto Interamericano de Ciencias Agrícolas en su Centro Tropical de Enseñanza e Investigación de Turrialba, Costa Rica, para la zonificación ecológica de cultivos puede ser empleado con tres niveles diferentes de detalle. Estas tres aproximaciones sucesivas son las siguientes:

a. **Primera Aproximación** (Nivel de zona). Es el resultado de la expresión cartográfica sintética del análisis de variables agroclimáticas que inciden en el cultivo en estudio.
b. **Segunda Aproximación (Nivel de subzona).** Es el resultado de adicionar a la Primera Aproximación, las variables fisio-edáficas que inciden en el cultivo. Se logra una subdivisión de las zonas agroclimáticas.

c. **Tercera Aproximación (Nivel de área).** Resultado de la adición, a la Segunda Aproximación, de variables medio ambientales cuya presencia es localizada. Se logra obtener una subdivisión de las subzonas de la segunda aproximación.

Las escalas cartográficas recomendadas para estas aproximaciones son: para la Primera Aproximación, escalas menores de 1:500.000; para la Segunda Aproximación, escalas de 1:50.000 a 1:500.000; y para la Tercera Aproximación, escalas mayores a 1:100.000.

En este Proyecto el nivel de detalle empleado corresponde a la Segunda Aproximación del esquema metodológico general; es decir, que incluye el análisis de variables agroclimáticas y fisioedáficas, correspondientes a los diez cultivos considerados. La expresión cartográfica final corresponde a la escala 1:500.000.

Para lograr esta Segunda Aproximación de zonificación de cultivos la metodología empleada está compuesta por las siguientes etapas sucesivas:

5.1. **Primera etapa:** Definición de los requerimientos agroecológicos de los cultivos.

En esta etapa se determina para el cultivo en estudio sus requerimientos ecológicos; éstos pueden ser definidos en diversas formas según la disponibilidad de información. En el caso ideal se determinan, en primera instancia, los índices agroclimáticos, para lo cual se podrán seguir las siguientes vías:
a. Determinación del tipo bioclimático del cultivo.
b. Valoración agroclimática de la región de origen de la especie.
c. Valoración agroclimática de las regiones del mundo de difusión de la especie.
d. Valoración del agroclima de las regiones en donde la experiencia ha demostrado el fracaso del cultivo.
e. Valoración de índices agroclimáticos derivados de trabajos experimentales sobre los requerimientos agroclimáticos de la especie.

Mediante la aplicación de las normas anteriores, se puede determinar el agroclima de una especie cultivada y si la amplitud comprendida entre los valores extremos de los índices se divide en jerarquías sistemáticas se obtienen los tipos agroclimáticos, que facilitan la clasificación y permiten establecer diferencias y analogías.

Paralelamente a la determinación de los índices agroclimáticos habrá que proceder en forma similar para la determinación de los requerimientos fisio-édáficos del cultivo en función de sus exigencias biológicas y de los requerimientos de la tecnología para su producción.

En los casos en que la información sobre el cultivo sea deficiente se podrá emplear, para la determinación de los rangos de tolerancia del cultivo, el análisis de variables climáticas y no agroclimáticas, como sería en la situación ideal.

5.2. Segunda etapa: Estimación de diversos elementos meteorológicos para el área en estudio.

Una situación real que se presenta por lo general en los países tropicales de nuestro continente y del mundo, es la deficiente información meteorológica disponible. Por lo general la red de estaciones es de poca densidad y de deficiente distribución. Otra razón por la cual se incluye esta etapa de estimación
de elementos meteorológicos es que por lo general un alto porcentaje de las estaciones de registro son de cuarto orden, o sea que hacen mediciones solamente de precipitaciones.

Por medio de diversas técnicas se estimará, para las localidades de registros parciales, los otros elementos meteorológicos necesarios para el análisis agroclímático detallado. Entre las estimaciones que con más frecuencia se realizan pueden ser señaladas, las térmicas en sus aspectos de medias generales, de máximas o de mínimas, y las de humedad relativa.

5.3 Tercera etapa: Análisis agroclímático.

En esta tercera etapa se contempla el análisis agroclímático detallado, considerando la disponibilidad de datos meteorológicos compilados o estimados en la segunda etapa, así como de los requerimientos agroclimáticos específicos para el cultivo, dados por los tipos agroclimáticos que se determinaron en la primera etapa.

En condiciones óptimas de disponibilidad de datos meteorológicos observados o estimados y del conocimiento de los tipos agroclimáticos, el tipo de análisis que se emplea es el del balance de agua en el suelo a lo largo del ciclo anual. Este tipo de análisis permite definir zonas agroclimáticas, las que pueden ser jerarquizadas, además de ofrecer un conjunto de indicaciones sobre la calendarización de prácticas culturales de la especie relativas a épocas y fechas óptimas de siembra, un ejemplo de este tipo de análisis se puede ver en el trabajo de García y Montoya (16).

En condiciones de deficiente información meteorológica o de índices agroecológicos, podrán realizar otro tipo de análisis, como serían la determinación de isoyetas acumuladas a partir de una fecha de siembra, determinación de períodos ecosocos, etc.

Estos análisis se establecerán para la totalidad de localidades que tengan registros meteorológicos, ya que posteriormente
en la quinta etapa se elaborarán por interpolación y análisis diversos mapas factoriales teniendo como puntos de referencia las localidades analizadas.

5.4. **Cuarta etapa: Análisis de variables fisio-édáficas.**

A partir del conocimiento de los requerimientos edáficos de los cultivos, determinados en la primera etapa, y del conocimiento de las prácticas culturales más aconsejables (riego, mecanización, etc.) para el cultivo, se analiza la información disponible sobre aspectos topográficos y edáficos del territorio a zonificar.

En condiciones óptimas, el tipo de documentos cartográficos más empleados, son los mapas de capacidad de uso de la tierra o de uso potencial. En el caso de no disponer de estos documentos se podrá emplear mapas de suelos, de tipo genético (grandes grupos, series, etc.), los cuales deberán ser interpretados en función del cultivo en estudio. En el peor de los casos, cuando no se dispone de ningún documento cartográfico sobre suelos, se podrá emplear mapas hipsométricos o llevar a cabo una fotointerpretación de tipo rápido (geomorfológica o fisiográfica). Por supuesto, en este caso el grado de precisión será bastante bajo.

Con la finalidad de simplificar la interpretación de las variables fisioedáficas por los utilizadores de los mapas de zonificación, se recomienda hacer una jerarquización de las unidades cartográficas de suelo en función de su aptitud para el cultivo considerado. Las tres categorías que se emplean con más frecuencia son las siguientes:

(1) Muy buena
(2) Buena
(3) Regular
5.5. **Quinta etapa: Elaboración de mapas factoriales.**

Esta etapa se inicia con la confección de un mapa base que pueda ser reproducido en copias transparentes. La etapa en sí consiste en dar una expresión cartográfica a las variables ecológicas (agroclimáticas y edáficas) analizadas en las etapas previas, considerando los límites dados por los tipos agroecológicos. Como ejemplo de mapas factoriales que pueden ser trazados, se citan los siguientes:

De variables térmicas:
- Isotermas promedio anual,
- Isotermas promedio para los períodos vegetativos del cultivo considerado,
- Isotermas de máximas,
- Isotermas de mínimas.

De variables hídricas:
- Isoyetas totales para los períodos vegetativos del cultivo considerado,
- Número de meses eco-secos.

De combinación de variables (sintéticos)
- Isolíneas de excesos hídricos,
- Isolíneas de deficiencias hídricas,
- Isofanas de la duración de época de siembra,
- Isofana de cosecha.

De variables fisio-édáficas
- Categorías de capacidad de uso de la tierra
- Categorías de uso potencial de la tierra.

En esta etapa se procura confeccionar los mapas factoriales en una escala cartográfica uniforme.
5.6. Sexta etapa: Síntesis cartográfica sucesiva.

Esta etapa consiste en hacer una síntesis con los mapas factoriales elaborados en la etapa precedente. El número de mapas factoriales que se emplean está dado por el grado de detalle que se desee dar al estudio, que a su vez estará relacionado a la escala cartográfica empleada.

El método más simple de llevar a cabo esta etapa, es mediante el uso de una técnica empleada frecuentemente en ciencias geográficas, la que se denomina de síntesis cartográfica sucesiva. Esta síntesis cartográfica puede ser llevada a cabo por métodos manuales o por métodos de síntesis modernos con la ayuda de computadoras.

La síntesis cartográfica sucesiva consiste, como su propio nombre lo indica, en la superposición y síntesis sucesiva de los mapas factoriales. Por lo general en el esquema metodológico propuesto se trabaja en dos fases: la primera que conduce a la síntesis de mapas factoriales agroclimáticos, que dará como resultado la definición de las áreas agroclimáticas para el cultivo y la segunda que corresponde a la adición a esta síntesis agroclimatática, de las variables fisio-édáficas alcanzando de esta manera la definición de unidades de zonificación ecológica del cultivo.

5.7. Séptima etapa: Elaboración de mapas e informes finales.

Esta etapa consiste en el dibujo final de los mapas y en la elaboración de sus informes respectivos. Para la confección de los mapas finales se hará el diseño correspondiente para la organización del material cartográfico, textos y leyendas que acompañan al documento.

En el marco de los proyectos de zonificación que el Instituto Interamericano de Ciencias Agrícolas está llevando a cabo se ha adoptado algunas pautas para la presentación de los mapas finales. Así, la zona agroclimática general será delimitada por un
trazo continuo grueso, las subdivisiones térmicas por un trazo fino cortado y las hídricas por uno fino punteado. Las subdivisiones fisioedáficas son indicadas mediante trazos finos continuos.

Por otra parte, las unidades delimitadas serán caracterizadas por un quebrado, en cuyo denominador, que representa las variables agroclimáticas, se encontrarán dos cifras, correspondiendo la primera a la categoría térmica y la segunda a la categoría hídrica. En el denominador se encontrará, a la izquierda, una cifra que indica la categoría fisioedáfica y una letra que indica las posibles limitaciones que deberán ser tomadas en cuenta para el manejo eficiente del recurso suelo.

Con la finalidad de hacer más accesible la interpretación por los utilizadores potenciales de las unidades de zonificación ecológica, se hace una jerarquización de las diversas unidades. Las categorías de agrupación indican la probabilidad de obtener buenos rendimientos. Al presente se contemplan las siguientes categorías:

(I) Muy alta probabilidad de obtener buenos rendimientos,
(II) Alta probabilidad de obtener buenos rendimientos,
(III) Regular probabilidad de obtener buenos rendimientos,
(IV) Baja probabilidad de obtener buenos rendimientos,
(V) Muy baja probabilidad de obtener buenos rendimientos.

6. **Aplicación del método de zonificación en el proyecto**

En el proyecto, los cultivos que se zonificaron corresponden a los principales cultivos de consumo básico en Panamá y a los tradicionales de exportación. Los cultivos son los siguientes:
Ajonjolí (*sesamum indicum*)
Algodón (*Gossypium hirsutum*)
Arroz (*Oryza sativa*)
Banano (*Musa sapientum*)
Cacao (*Theobroma cacao*)
Café (*Coffea arabica*)
Maíz (*Zea mays*)
Maní (*Arachis hypogaea*)
Palma africana (*Elais quinensis*)
Poroto (*Phaseolus vulgaris*)

En el esquema metodológico propuesto se trabajó con un grado de detalle de segunda aproximación y con una escala de expresión cartográfica de 1:500.000. Los trabajos que se realizaron en el Proyecto son los que se describen a continuación:

6.1. **Primera etapa:** Definición de los requerimientos agroecológicos de los cultivos.

Básicamente los requerimientos ecológicos (agroclimáticos y edáficos) fueron determinados en base a una extensa revisión de literatura, que permitió, según los casos, determinar el tipo bioclimático del cultivo, al hacer la valoración del área de difusión del mismo y, en pequeño número de casos, valorar los índices agroclimáticos derivados de trabajos experimentales. Esta extensa revisión de literatura llevó a la elaboración de un total de 650 fichas bibliográficas que ha constituido un banco de información ecológica sobre los cultivos zonificados.

6.1.1. **Requerimientos térmicos.** Los requerimientos térmicos determinados para los cultivos incluidos en el proyecto se observan en el Cuadro 1; estos requerimientos corresponden, en el caso de cultivos anuales, a las temperaturas necesarias durante el ciclo y en el caso de cultivos perennes se refieren a promedios anuales.
CUADRO 1. Índices térmicos considerados en el proyecto expresados en grados centígrados.

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>(1) Optimo</th>
<th>(2) Tendencia al déficit</th>
<th>(3) Tendencia al exceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajonjilí</td>
<td>24-27</td>
<td>21-24</td>
<td>más de 27</td>
</tr>
<tr>
<td>Algodón</td>
<td>24-28</td>
<td>20-24</td>
<td>más de 28</td>
</tr>
<tr>
<td>Arroz</td>
<td>24-27</td>
<td>21-24</td>
<td>más de 27</td>
</tr>
<tr>
<td>Banano</td>
<td>25-30</td>
<td>22-25</td>
<td>más de 30</td>
</tr>
<tr>
<td>Cacao</td>
<td>23-25</td>
<td>21-23</td>
<td>más de 25</td>
</tr>
<tr>
<td>Café</td>
<td>19-22</td>
<td>17-19</td>
<td>22-24</td>
</tr>
<tr>
<td>Maíz</td>
<td>19-24</td>
<td>15-19</td>
<td>24-28</td>
</tr>
<tr>
<td>Maní</td>
<td>23-26</td>
<td>20-23</td>
<td>más de 26</td>
</tr>
<tr>
<td>Palma aceitera</td>
<td>24-26</td>
<td>22-24</td>
<td>más de 26</td>
</tr>
<tr>
<td>Poroto</td>
<td>20-23</td>
<td>17-20</td>
<td>23-27</td>
</tr>
</tbody>
</table>

6.1.2. **Requerimientos hídricos.** En el caso de la determinación de los requerimientos hídricos, la información compilada en la revisión bibliográfica fue extremadamente variada. En algunos casos se obtuvo información detallada, proveniente de análisis llevados a cabo por diversos autores y expresados como verdaderos índices agroclimáticos; un ejemplo de estos son los establecidos por García para poroto (10), café (9) y ajonjilí (13) o los de Burgos et al (5) para cacao. En otros casos la información disponible fue extremadamente escasa, como en el caso del algodón, banano, arroz, maíz, maní y palma aceitera, para los cuales se determinaron índices agroclimáticos o, en el peor de los casos, simples límites de tolerancia de tipo climático y no agroclimático, como hubiera sido lo ideal.
Dentro de la diversidad de índices hídricos que se determinaron fue necesario hacer una selección de los que se emplearon directamente en las zonificaciones del Proyecto. Esto se hizo necesario en vista de que la escala cartográfica de expresión final fue limitada y no podía incluir más de un parámetro hídrico. La selección de los índices hídricos empleados se hizo considerando aquel que mejor expresara, en el ámbito panameño, una síntesis de las características hídricas reinantes.

En los Cuadros 2 al 11 se presentan los índices que fueron empleados en el Proyecto para cada uno de los cultivos considerados.

CUADRO 2. Índices hídricos empleados para la zonificación de cultivos de ajonjoli en Panamá.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Isoyeta acumulada para la duración del cultivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400 a 550 mm</td>
</tr>
<tr>
<td>2</td>
<td>300 a 400 mm</td>
</tr>
<tr>
<td>3</td>
<td>500 a 700 mm</td>
</tr>
<tr>
<td>4</td>
<td>700 a 850 mm</td>
</tr>
</tbody>
</table>
CUADRO 3. Indices hídricos empleados para la zonificación del cultivo de algodón en Panamá.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Isoyeta acumulada para la duración del cultivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>550 a 700 mm</td>
</tr>
<tr>
<td>2</td>
<td>400 a 550 mm</td>
</tr>
<tr>
<td>3</td>
<td>700 a 850 mm</td>
</tr>
<tr>
<td>4</td>
<td>más de 850 mm</td>
</tr>
</tbody>
</table>

CUADRO 4. Indices hídricos empleados para la zonificación del cultivo de arroz en Panamá.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Isoyeta acumulada para la duración del cultivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700 a 850 mm</td>
</tr>
<tr>
<td>2</td>
<td>550 a 700 mm</td>
</tr>
<tr>
<td>3</td>
<td>850 a 1000 mm</td>
</tr>
</tbody>
</table>
CUADRO 5. Indices hídricos empleados para la zonificación del cultivo de banano en Panamá.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Deficiencia hídrica anual</th>
<th>Exceso hídrico anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>no hay</td>
<td>de 1000 a 1500 mm</td>
</tr>
<tr>
<td>2</td>
<td>no hay</td>
<td>de 0 a 1000 mm</td>
</tr>
<tr>
<td>3</td>
<td>igual o menor a 100 mm</td>
<td>de 1000 a 1500 mm</td>
</tr>
<tr>
<td>4</td>
<td>igual o menor a 100 mm</td>
<td>de 0 a 1000 mm</td>
</tr>
<tr>
<td>5</td>
<td>igual o menor a 100 mm</td>
<td>de 1500 a 2000 mm</td>
</tr>
<tr>
<td>6</td>
<td>no hay</td>
<td>de 1500 a 2000 mm</td>
</tr>
<tr>
<td>7</td>
<td>no hay</td>
<td>más de 2000 mm</td>
</tr>
<tr>
<td>8</td>
<td>igual o menor a 100 mm</td>
<td>más de 2000 mm</td>
</tr>
</tbody>
</table>

CUADRO 6. Indices hídricos empleados para la zonificación del cultivo de cacao en Panamá.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Deficiencia hídrica anual</th>
<th>Exceso hídrico anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>no hay</td>
<td>de 0 a 1000 mm</td>
</tr>
<tr>
<td>2</td>
<td>igual o menor a 250 mm</td>
<td>de 0 a 1000 mm</td>
</tr>
<tr>
<td>3</td>
<td>igual o menor a 250 mm</td>
<td>de 1000 a 1500 mm</td>
</tr>
<tr>
<td>4</td>
<td>no hay</td>
<td>de 1000 a 1500 mm</td>
</tr>
<tr>
<td>5</td>
<td>no hay</td>
<td>de 1500 a 2000 mm</td>
</tr>
<tr>
<td>6</td>
<td>igual o menor a 250 mm</td>
<td>de 1500 a 2000 mm</td>
</tr>
<tr>
<td>7</td>
<td>igual o menor a 250 mm</td>
<td>más de 2000 mm</td>
</tr>
<tr>
<td>8</td>
<td>no hay</td>
<td>más de 2000 mm</td>
</tr>
</tbody>
</table>
CUADRO 7. Indices hídricos empleados para la zonificación del cultivo de café en Panamá.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Deficiencia hídrica anual</th>
<th>Exceso hídrico anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>de 0 a 200 mm</td>
<td>de 500 a 1000 mm</td>
</tr>
<tr>
<td>1 a</td>
<td>de 0 a 200 mm</td>
<td>de 0 a 500 mm</td>
</tr>
<tr>
<td>3</td>
<td>de 200 a 250 mm</td>
<td>de 500 a 1000 mm</td>
</tr>
<tr>
<td>3 a</td>
<td>de 200 a 250 mm</td>
<td>de 0 a 500 mm</td>
</tr>
<tr>
<td>4</td>
<td>de 0 a 200 mm</td>
<td>de 1000 a 1500 mm</td>
</tr>
<tr>
<td>6</td>
<td>de 200 a 250 mm</td>
<td>de 1000 a 1500 mm</td>
</tr>
</tbody>
</table>

CUADRO 8. Indices hídricos empleados para la zonificación del cultivo de maíz en Panamá.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Isoyeta acumulada para la duración del cultivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700 a 850 mm</td>
</tr>
<tr>
<td>2</td>
<td>550 a 700 mm</td>
</tr>
<tr>
<td>3</td>
<td>850 a 1000 mm</td>
</tr>
<tr>
<td>4 e</td>
<td>más de 1000 mm</td>
</tr>
<tr>
<td>4 d</td>
<td>400 a</td>
</tr>
</tbody>
</table>
CUADRO 9. Indices hídricos empleados para la zonificación del cultivo del maní en Panamá.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Isoyeta acumulada para la duración del cultivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>450 - 600 mm</td>
</tr>
<tr>
<td>2</td>
<td>350 - 450 mm</td>
</tr>
<tr>
<td>3</td>
<td>600 - 750 mm</td>
</tr>
</tbody>
</table>

CUADRO 10. Indices hídricos empleados para la zonificación del cultivo de palma africana en Panamá.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Deficiencia hídrica anual</th>
<th>Exceso hídrico anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>no hay</td>
<td>de 1000 a 1500 mm</td>
</tr>
<tr>
<td>2</td>
<td>no hay</td>
<td>de 0 a 1000 mm</td>
</tr>
<tr>
<td>3</td>
<td>menos de 100 mm</td>
<td>de 1000 a 1500 mm</td>
</tr>
<tr>
<td>4</td>
<td>menos de 100 mm</td>
<td>de 0 a 1000 mm</td>
</tr>
<tr>
<td>5</td>
<td>menos de 100 mm</td>
<td>de 1500 a 2000 mm</td>
</tr>
<tr>
<td>6</td>
<td>no hay</td>
<td>de 1500 a 2000 mm</td>
</tr>
<tr>
<td>7</td>
<td>no hay</td>
<td>más de 2000 mm</td>
</tr>
<tr>
<td>8</td>
<td>menos de 100 mm</td>
<td>más de 2000 mm</td>
</tr>
</tbody>
</table>
CUADRO 11. Índices hídricos empleados para la zonificación del cultivo del poroto en Panamá.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Duración de la época de siembra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>más de 45 días</td>
</tr>
<tr>
<td>2</td>
<td>entre 30 y 45 días</td>
</tr>
<tr>
<td>3</td>
<td>entre 15 y 30 días</td>
</tr>
<tr>
<td>4</td>
<td>entre 0 y 15 días</td>
</tr>
</tbody>
</table>

6.2. **Segunda etapa:** Estimación de diversos elementos metereológicos para el área de estudio.

La información metereológica compilada en Panamá para el Proyecto, muestra graves deficiencias cuando se desea emplear esta para fines agroclimáticos. De las 71 estaciones metereológicas cuyos datos se emplearon en el Proyecto, solamente 11 tenían registros termométricos, siendo el resto estaciones de cuarto orden, es decir con registros, pluviométricos solamente. Esta razón sumada a una deficiente distribución de las estaciones en el territorio panameño hizo necesario estimar para las estaciones de cuarto orden otros elementos metereológicos necesarios para poder proceder al análisis agroclimático de la tercera etapa del esquema metodológico.

Los métodos y procedimientos que se siguieron para las estimaciones de los diversos elementos metereológicos, fueron concentradas solamente para la estimación del elemento térmico en sus valores de promedios mensuales de máximas, mínimas y medias.

La técnica empleada fue la del establecimiento de las relaciones que existen entre la altura sobre el nivel del mar y las temperaturas, llegándose a establecer ecuaciones de estimación
alto-térmicas. Las ecuaciones estimadas pueden ser observadas en el Cuadro 12.

CUADRO 12. Ecuaciones de estimación térmica mensual para Panamá.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Medias</th>
<th>Máximas</th>
<th>Mínimas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enero</td>
<td>-0,0059 h + 26,44</td>
<td>-0,0062 h + 31,74</td>
<td>-0,0059 h + 21,37</td>
</tr>
<tr>
<td>Febrero</td>
<td>-0,0063 h + 26,97</td>
<td>-0,0063 h + 32,41</td>
<td>-0,0065 h + 21,64</td>
</tr>
<tr>
<td>Marzo</td>
<td>-0,0060 h + 27,38</td>
<td>-0,0077 h + 32,75</td>
<td>-0,0064 h + 22,14</td>
</tr>
<tr>
<td>Abril</td>
<td>-0,0064 h + 27,67</td>
<td>-0,0064 h + 33,04</td>
<td>-0,0065 h + 22,45</td>
</tr>
<tr>
<td>Mayo</td>
<td>-0,0060 h + 27,23</td>
<td>-0,0060 h + 32,31</td>
<td>-0,0062 h + 22,48</td>
</tr>
<tr>
<td>Junio</td>
<td>-0,0059 h + 26,65</td>
<td>-0,0056 h + 31,20</td>
<td>-0,0060 h + 22,05</td>
</tr>
<tr>
<td>Julio</td>
<td>-0,0057 h + 26,70</td>
<td>-0,0055 h + 31,25</td>
<td>-0,0061 h + 22,23</td>
</tr>
<tr>
<td>Agosto</td>
<td>-0,0055 h + 26,45</td>
<td>-0,0053 h + 31,36</td>
<td>-0,0061 h + 21,96</td>
</tr>
<tr>
<td>Setiembre</td>
<td>-0,0056 h + 26,34</td>
<td>-0,0056 h + 31,16</td>
<td>-0,0057 h + 21,47</td>
</tr>
<tr>
<td>Octubre</td>
<td>-0,0061 h + 26,57</td>
<td>-0,0058 h + 30,89</td>
<td>-0,0058 h + 21,59</td>
</tr>
<tr>
<td>Noviembre</td>
<td>-0,0058 h + 26,44</td>
<td>-0,0057 h + 30,88</td>
<td>-0,0056 h + 21,59</td>
</tr>
<tr>
<td>Diciembre</td>
<td>-0,0060 h + 26,56</td>
<td>-0,0058 h + 30,97</td>
<td>-0,0056 h + 21,54</td>
</tr>
</tbody>
</table>

\(h = \) altura sobre el nivel del mar.

6.3. Tercera etapa: Análisis agroclimático.

El análisis agroclimático comporta diversos estudios, entre los cuales el principal es el relativo a estudio del balance hídrico mensual. Es el marco del Proyecto este análisis fue llevado a cabo para cada una de las localidades de las cuales se dispo-
nía de información metereológica, ya sea procedente de observa-
ciones reales o de las estimaciones realizadas en la segunda etapa
del esquema metodológico.

Para el análisis del balance hídrico, tendiente a determinar
las magnitudes de exceso y deficiencia de agua a lo largo del año,
se siguió el método propuesto por Thornthwaite y Mather (31), el
cual fue modificado en diversos aspectos.

Para el cálculo de la evapotranspiración potencial se empleó
la ecuación estimadora propuesta por Papadakis (28) la cual tiene
la siguiente expresión:

\[E = 0.5625 \left(e_{\text{max}} - e_{\text{min}} - 2 \right) \]

donde:

- \(e_{\text{max}} \) = presión de saturación del vapor de agua correspon-
 diente a la temperatura máxima diaria en milibares.

- \(e_{\text{min}} - 2 \) = presión de saturación del vapor de agua, correspon-
 diente a la temperatura mínima rebajada de 2°C.

La fórmula de Papadakis (28) presentó la ventaja de requerir
solamente parámetros térmicos y ser más precisa que otras fórmulas
similares en condiciones tropicales.

La segunda modificación del procedimiento para el cálculo del
balance hídrico propuesto por Thornthwaite, fue el de no haber se-
guido las tablas que este autor propone para estimar la capacidad
de retención de agua en el suelo para diferentes combinaciones de
suelo y vegetación. En esta situación, el almacenaje de agua en
el suelo se calculó en base a valores medios de capacidad de campo
y punto de marchitez, asumiendo profundidades radicales específi-
cas para los cultivos en estudio que corresponden aproximadamente
toda la profundidad en la cual se absorbe el 90% del agua.

Como resultado del análisis del balance hidrológico promedio
de cada una de las estaciones climatológicas consideradas en Pan-
amá y en el caso de cultivos anuales se puede determinar:
a. Epoca óptima promedio de siembra;
b. Duración promedio de la época de siembra.

En el caso de hacer un análisis exhaustivo se puede deter-
minar adicionalmente:

a. Variabilidad de la época de siembra;
b. Porcentaje de años negativos, en los cuales el cultivo
mermaría gravemente su producción por excesos o deficien-
cias hídricas.

Un ejemplo detallado de este tipo de análisis se puede con-
sultar en el trabajo de García y Montoya (16) en el cual llegan a
determinar más de 10 parámetros relativos a la época y fecha de
siembra, para un cultivo anual.

En el presente Proyecto se hizo solamente un análisis de ba-
lance hídrico promedio, a partir del cual, mediante un análisis ade-
cuado se puede llegar a determinar algunos de los parámetros relati-
vos a la siembra indicados anteriormente. A título de ejemplo se
puede ver el Cuadro 13, que representa el análisis hidrológico de
la estación de registros metereológicos "Planta Caldera", localiza-
da en cuenca del Río Chiriquí, Departamento de Boquete. Analizando
este balance hidrológico en función de los índices agroclimáticos
para el poroto (Phaseolus vulgaris) (10, 24), se puede ver que es
recién a partir del 15 de noviembre en que se puede realizar la
siembra del cultivo mencionado, ya que es a partir de esa fecha en
que ya no se presentan excesos hídricos. Tomando en cuenta que el
ciclo del cultivo es de 90 días, se observa que la duración de épo-
ca de siembra es de solamente 30 días y que la fecha óptima de siem-
bra es de 1 de diciembre. Las cosechas correspondientes a siembras
que se realicen después del 15 de diciembre correrán el riesgo de
perderse en vista de que a partir del mes de abril nuevamente se pre-
sentan excesos hídricos, que, sin ser extremos, no favorecen la madu-
ración ni la cosecha de los granos.

Estación: Planta Caldera (Chiriquí, Boquete)
Lat.: 8º 39'
Long.: 82º 23'
Altura: 960 m snm

<table>
<thead>
<tr>
<th>Capacidad de saturación: 125 mm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
<th>ANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura, ºC Max.</td>
<td>22,7</td>
<td>23,4</td>
<td>23,9</td>
<td>23,8</td>
<td>23,2</td>
<td>23,5</td>
<td>22,3</td>
<td>22,6</td>
<td>22,8</td>
<td>22,8</td>
<td>23,1</td>
<td>23,3</td>
<td></td>
</tr>
<tr>
<td>Temperatura, ºC Min.</td>
<td>14,7</td>
<td>14,5</td>
<td>14,9</td>
<td>14,8</td>
<td>14,5</td>
<td>13,9</td>
<td>14,0</td>
<td>13,8</td>
<td>13,6</td>
<td>13,9</td>
<td>14,1</td>
<td>15,1</td>
<td></td>
</tr>
<tr>
<td>Temperatura, ºC Media</td>
<td>19,4</td>
<td>19,7</td>
<td>20,1</td>
<td>19,9</td>
<td>19,5</td>
<td>18,4</td>
<td>18,6</td>
<td>18,6</td>
<td>18,5</td>
<td>18,4</td>
<td>18,6</td>
<td>19,0</td>
<td></td>
</tr>
<tr>
<td>Vaport. Potencial</td>
<td>72</td>
<td>81</td>
<td>83</td>
<td>83</td>
<td>79</td>
<td>84</td>
<td>72</td>
<td>76</td>
<td>79</td>
<td>77</td>
<td>80</td>
<td>76</td>
<td>942</td>
</tr>
<tr>
<td>Precipitación</td>
<td>22</td>
<td>53</td>
<td>66</td>
<td>212</td>
<td>363</td>
<td>567</td>
<td>454</td>
<td>458</td>
<td>629</td>
<td>891</td>
<td>299</td>
<td>65</td>
<td>4079</td>
</tr>
<tr>
<td>Diferencia P-EP</td>
<td>-50</td>
<td>-28</td>
<td>-17</td>
<td>129</td>
<td>284</td>
<td>483</td>
<td>382</td>
<td>382</td>
<td>550</td>
<td>814</td>
<td>219</td>
<td>-11</td>
<td></td>
</tr>
<tr>
<td>Almacenaje</td>
<td>76</td>
<td>60</td>
<td>53</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Variación de almacenaje</td>
<td>38</td>
<td>16</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Vapotr. Real</td>
<td>60</td>
<td>69</td>
<td>73</td>
<td>83</td>
<td>79</td>
<td>84</td>
<td>72</td>
<td>76</td>
<td>79</td>
<td>77</td>
<td>80</td>
<td>76</td>
<td>908</td>
</tr>
<tr>
<td>Deficiencia</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Exceso</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>57</td>
<td>284</td>
<td>483</td>
<td>382</td>
<td>382</td>
<td>550</td>
<td>814</td>
<td>219</td>
<td>0</td>
<td>3171</td>
</tr>
</tbody>
</table>
Aparte de las determinaciones de los excesos y deficiencias hídricas a lo largo del año, determinadas por medio del cálculo de balances hídricos, se hicieron otros análisis de tipo agroclimático. Entre éstos se puede señalar la producción de información básica para el trazado de isoyetolas acumuladas. Este tipo de información se determina mediante el cálculo de la precipitación pluvial ocurrida desde la fecha óptima de siembra o de cosecha, determinadas anteriormente, hasta la finalización del ciclo de cultivo para la especie considerada.

Otro tipo de determinación llevada a cabo fue aquella dirigida a la elaboración de mapas de duración de la estación seca; en este caso el procedimiento seguido es el que se basa en el principio de Gaussen (18) para el cálculo de estación seca.

Para finalizar esta etapa fue necesario procesar la información meteorológica, con la finalidad de elaborar posteriormente, en la Quinta Etapa los mapas factoriales de tipo netamente climático como son los de isoterma e isoyetolas anuales.

6.4. **Cuarta etapa: Análisis de variables fisio-édáficas.**

En esta etapa se procedió al análisis de diferentes documentos especialmente con expresión cartográfica, que contenían información sobre la capacidad o uso potencial de la tierra.

En el caso de este Proyecto se escogió el mapa de uso potencial de la tierra elaborado, según el sistema Plath, por Armuelles (1). Dicho documento fue seleccionado por ser el más actualizado y que sintetiza los trabajos sobre suelos llevados a cabo en Panamá, incluyendo los estudios del reciente Proyecto de Catastro Rural de Tierras y Aguas (25).

El análisis de este documento se llevó a cabo considerando los requerimientos edáficos de cada uno de los cultivos. Se procedió a analizar las diversas unidades de uso potencial de la tierra y asignándole un índice que indica su aptitud para el cultivo específico considerado. En el Cuadro 14 se puede observar...
la categorización llevada a cabo para cada uno de los cultivos incluidos en el Proyecto.

Además, como indicación adicional se señaló, cuando esto fue posible, el tipo de restricción de manejo de cada unidad. Las que se indicaron son las siguientes:

d. Deficiente drenaje
e. Pendientes excesivas
p. Suelos de textura pesada

Como se puede ver en la parte del análisis de las variables fisio-edáficas, se utilizó documentos que hace síntesis de estas variables. En ningún caso se generó nueva información sino que se hizo confianza a la bondad de estos documentos.

6.5 **Quinta etapa: Elaboración de mapas factoriales.**

En esta etapa se elaboraron una serie de mapas factoriales en base a la información producida en las etapas tercera y cuarta, y referida a la primera etapa en la cual se definieron los rangos de tolerancia ecológica para cada cultivo.

El fondo cartográfico empleado corresponde al mapa hipsométrico oficial en escala 1:500.000 que existe en Panamá (26).

En el caso de los mapas térmicos, se establecieron empleando las diversas ecuaciones estimadoras encontradas en la etapa segunda. Los mapas de isotermas corresponden en el caso de cultivos anuales a los valores promedio del período del cultivo, y para cultivos perennes al valor promedio anual. Los valores de las isotermas trazadas corresponden a los valores térmicos de los índices que se observan en el Cuadro 1, cuyos valores son los siguientes: 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, y 30 grados centígrados.

En el caso de los mapas factoriales hídricos o de síntesis, se trazaron isolinéas correspondientes a las magnitudes de
CUADRO 14. Transformación de las unidades de uso potencial de la tierra en categorías fisioedáficas, empleadas para la zonificación ecológica de cultivos en Panamá.

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Categoría fisioedáfica</th>
<th>(1) muy buena</th>
<th>(2) Buena</th>
<th>(3) Regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajonjolí</td>
<td>I A</td>
<td>II A</td>
<td>I P</td>
<td></td>
</tr>
<tr>
<td>Algodón</td>
<td>I A</td>
<td>II A</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Arroz</td>
<td>I A</td>
<td>II A</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Banano</td>
<td>I A</td>
<td>II A</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Cacao</td>
<td>I A - I P</td>
<td>II A - II P</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Café</td>
<td>I A - I P</td>
<td>II A - II P</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Maíz</td>
<td>I A</td>
<td>II A</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Maní</td>
<td>I A</td>
<td>II A</td>
<td>I P</td>
<td></td>
</tr>
<tr>
<td>Palma aceitera</td>
<td>I A - I P</td>
<td>II A - II P</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Poroto</td>
<td>I A</td>
<td>II A</td>
<td>I P</td>
<td></td>
</tr>
</tbody>
</table>

excesos o deficiencias hídricas para los cultivos cuyos índices hídricos así lo indican. Para otros cultivos fue necesario trazar isoyetas acumuladas (para el período de cultivo, a partir de la fecha óptima de siembra) o isolíneas de duración de estación seca. En un pequeño número de casos se trazaron isolíneas correspondientes al porcentaje de años negativos para el cultivo y de duración de época óptima de siembra.

Finalmente, para las variables fisio-edáficas se elaboró el mapa correspondiente a las unidades seleccionadas, que se indican en el Cuadro 14.
6.6. **Sexta etapa: Síntesis cartográfica sucesiva.**

Por medio del método simple de superposición cartográfica sucesiva se hicieron síntesis parciales. Una primera síntesis se logró al superponer los mapas factoriales correspondientes a las variables agroclimáticas. Generalmente se procedió a superponer el mapa factorial hídrico sobre el térmico. Esta síntesis parcial permitió delimitar el área denominada agroclimatíca general.

El área agroclimatíca general fue recortada al superponer el mapa factorial de variables fisio-edáficas, lográndose de esta manera un síntesis final que corresponde a la zonificación ecológica del cultivo.

Esta síntesis cartográfica se hizo para cada uno de los diez cultivos incluidos en el Proyecto. Como resultados de esta síntesis cartográfica se llegó a la elaboración de un total de 10 mapas de zonificación, para los cultivos de ajonjoli, algodón, arroz, banano, cacao, café, maíz, maní, palma aceitera y poroto.

6.7. **Séptima etapa: Elaboración de mapas e informes finales.**

La última etapa del esquema metodológico comportó el dibujo final de los mapas de zonificación; para el diseño del modelo de mapa se tomó en consideración el tipo de utilizador potencial de los mapas de zonificación.

Como se indicó anteriormente, para no recargar los mapas con información, sólo se consideró el trazado de la información ecológica (agroclima y suelo) excluyendo todo tipo de información básica; ésta es la razón por la cual la publicación de los mapas finales deberá ser hecha sobre papel de tipo transparente.

En todos los mapas se observa el trazado del área agroclimatíca general, correspondiente a la primera síntesis cartográfica parcial, mediante líneas sólidas gruesas, pudiéndose observar el
trazado de límites hídricos con líneas finas punteadas y las térmicas por líneas finas partida. La subdivisión del área agroclimática general se identifica por trazos finos continuos que corresponden a los límites de las unidades fisioedáficas.

Cada una de las unidades delimitadas se encuentra calificada mediante un quebrado, como se indicó anteriormente.

Con la finalidad de facilitar el empleo de los mapas de zonificación por utilizadores potenciales, no especialistas en agroclimatología, ecología y ciencias afines, se hizo una categorización de las unidades delimitadas. Las categorías en las cuales se ordenaron los diversos tipos de unidades son cinco, y se refieren a la probabilidad que se tiene para la obtención de buenos rendimientos. Además de esta categorización se determinaron mediante planimetría el área que corresponde a cada tipo de unidad, esta cuantificación puede ser analizada en los Cuadros 15 al 24.

Como síntesis final de tipo general se adjunta el Cuadro 25 en el cual se indica el porcentaje de área zonificada que corresponde a cada una de las cinco categorías de unidades.
CUADRO 15. Jerarquización de las unidades de zonificación para el cultivo de ajonjolí, y superficie encontrada para su cultivo en Panamá. (En miles de hectáreas).

<table>
<thead>
<tr>
<th>Categoría (probabilidad de obtención de buenos rendimientos)</th>
<th>(I) muy alta</th>
<th>(II) alta</th>
<th>(III) regular</th>
<th>(IV) baja</th>
<th>(V) muy baja</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/1 13,75</td>
<td>11/3 20,00</td>
<td>12/3 18,75</td>
<td>13/3 111,25</td>
<td>14/3 35,00</td>
<td></td>
</tr>
<tr>
<td>11/2 62,50</td>
<td>12/2 47,50</td>
<td>13/2 82,50</td>
<td>14/2 42,50</td>
<td>24/2 1,25</td>
<td></td>
</tr>
<tr>
<td>12/1 12,50</td>
<td>13/1 85,00</td>
<td>14/1 13,75</td>
<td>22/3 6,25</td>
<td>24/3 41,25</td>
<td></td>
</tr>
<tr>
<td>21/1 21/2 2,50</td>
<td>21/3 1,25</td>
<td>23/3 10,00</td>
<td>33/3</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>22/1 22/2</td>
<td>---</td>
<td>24/1 1,25</td>
<td>34/1</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>31/1 31/1</td>
<td>23/1 1,25</td>
<td>31/3</td>
<td>---</td>
<td>34/2</td>
<td></td>
</tr>
<tr>
<td>23/2 23/2</td>
<td>---</td>
<td>32/3</td>
<td>---</td>
<td>34/3</td>
<td></td>
</tr>
<tr>
<td>31/2 31/2</td>
<td>---</td>
<td>33/1</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>32/1 32/2</td>
<td>---</td>
<td>33/2</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Sub-Total 88,75</td>
<td>155,00</td>
<td>117,50</td>
<td>171,25</td>
<td>77,50</td>
<td></td>
</tr>
</tbody>
</table>

Total: 610,00 miles de hectáreas
CUADRO 16. Jerarquización de las unidades de zonificación para el cultivo del algodón, y superficie encontrada para su cultivo en Panamá. (miles de hectáreas).

<table>
<thead>
<tr>
<th>(I) muy alta</th>
<th>(II) alta</th>
<th>(III) regular</th>
<th>(IV) baja</th>
<th>(V) muy baja</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/1 21,25</td>
<td>12/2 10,00</td>
<td>13/2 53,75</td>
<td>14/1 92,50</td>
<td>14/2 131,25</td>
</tr>
<tr>
<td>11/2 76,25</td>
<td>13/1 10,00</td>
<td>22/2 ---</td>
<td>23/2 1,25</td>
<td>24/1 2,50</td>
</tr>
<tr>
<td>12/1 15,00</td>
<td>21/3 ---</td>
<td>23/1 ---</td>
<td></td>
<td>24/2 2,50</td>
</tr>
<tr>
<td>21/1 ---</td>
<td>22/1 ---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub-Total 112,50 20,00 53,75 93,75 136,25

Total: 416,25 miles de hectáreas
CUADRO 17. Jerarquización de las unidades de zonificación para el cultivo de arroz, y superficie encontrada para su cultivo en Panamá.

<table>
<thead>
<tr>
<th>Categoría</th>
<th>(probabilidad de obtener buenos rendimientos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I) muy alta</td>
</tr>
<tr>
<td></td>
<td>11/1 18,75</td>
</tr>
<tr>
<td></td>
<td>11/2 53,75</td>
</tr>
<tr>
<td></td>
<td>12/1 18,75</td>
</tr>
<tr>
<td></td>
<td>21/1 ---</td>
</tr>
<tr>
<td></td>
<td>22/1 ---</td>
</tr>
<tr>
<td></td>
<td>22/2 ---</td>
</tr>
<tr>
<td></td>
<td>23/1 ---</td>
</tr>
<tr>
<td></td>
<td>31/1 ---</td>
</tr>
<tr>
<td></td>
<td>31/2 ---</td>
</tr>
<tr>
<td></td>
<td>32/1 ---</td>
</tr>
</tbody>
</table>

Sub-Totals: 91,25 112,50 53,75 85,00 17,50

Total: 360,00 miles de hectáreas
CUADRO 18. Jerarquización de las unidades de zonificación para el cultivo del banano, y superficie encontrada para su cultivo en Panamá, (miles de hectáreas).

<table>
<thead>
<tr>
<th>Categoría</th>
<th>probabilidad de obtener buenos rendimientos</th>
<th>(I) muy alta</th>
<th>(II) alta</th>
<th>(III) regular</th>
<th>(IV) baja</th>
<th>(V) muy baja</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/1</td>
<td>---</td>
<td>12/2</td>
<td>---</td>
<td>15/2</td>
<td>28,75</td>
<td>17/2</td>
</tr>
<tr>
<td>11/2</td>
<td>---</td>
<td>13/1</td>
<td>---</td>
<td>16/1</td>
<td>---</td>
<td>18/1</td>
</tr>
<tr>
<td>12/1</td>
<td>---</td>
<td>14/1</td>
<td>---</td>
<td>17/1</td>
<td>---</td>
<td>18/2</td>
</tr>
<tr>
<td>21/1</td>
<td>---</td>
<td>14/2</td>
<td>---</td>
<td>24/2</td>
<td>---</td>
<td>26/2</td>
</tr>
<tr>
<td>31/1</td>
<td>---</td>
<td>15/1</td>
<td>71,25</td>
<td>25/1</td>
<td>---</td>
<td>27/1</td>
</tr>
<tr>
<td>21/2</td>
<td>---</td>
<td>25/2</td>
<td>1,25</td>
<td>---</td>
<td>27/2</td>
<td>---</td>
</tr>
<tr>
<td>22/1</td>
<td>---</td>
<td>26/1</td>
<td>---</td>
<td>28/1</td>
<td>3,75</td>
<td>39/2</td>
</tr>
<tr>
<td>22/2</td>
<td>---</td>
<td>33/2</td>
<td>---</td>
<td>---</td>
<td>36/2</td>
<td>---</td>
</tr>
<tr>
<td>23/1</td>
<td>---</td>
<td>34/1</td>
<td>---</td>
<td>---</td>
<td>37/1</td>
<td>---</td>
</tr>
<tr>
<td>23/2</td>
<td>---</td>
<td>34/2</td>
<td>---</td>
<td>---</td>
<td>37/2</td>
<td>---</td>
</tr>
<tr>
<td>24/1</td>
<td>---</td>
<td>35/1</td>
<td>---</td>
<td>---</td>
<td>38/1</td>
<td>---</td>
</tr>
<tr>
<td>31/2</td>
<td>---</td>
<td>35/2</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32/1</td>
<td>---</td>
<td>36/1</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32/2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33/1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub Total --- 71,25 30,00 22,50

Total: 123,75 miles de hectáreas
CUADRO 19. Jerarquización de las unidades de zonificación para el cultivo del cacao, y superficie encontrada para su cultivo en Panamá. (miles de hectáreas).

<table>
<thead>
<tr>
<th>Categoría</th>
<th>(I) muy alta</th>
<th>(II) alta</th>
<th>(III) regular</th>
<th>(IV) baja</th>
<th>(V) muy baja</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/1 5,00</td>
<td>12/2 20,00</td>
<td>15/2 ---</td>
<td>16/2 18,75</td>
<td>17/2 31,25</td>
<td></td>
</tr>
<tr>
<td>11/2 0,25</td>
<td>13/1 6,25</td>
<td>16/1 3,75</td>
<td>17/1 36,25</td>
<td>18/2 6,25</td>
<td></td>
</tr>
<tr>
<td>12/1 11,25</td>
<td>13/2 36,25</td>
<td>24/2 ---</td>
<td>18/1 1,25</td>
<td>27/1 10,00</td>
<td>10,00</td>
</tr>
<tr>
<td>21/1 ---</td>
<td>14/1 ---</td>
<td>25/1 ---</td>
<td>25/2 ---</td>
<td>27/2 6,25</td>
<td></td>
</tr>
<tr>
<td>31/1 0,50</td>
<td>14/2 ---</td>
<td>33/2 107,50</td>
<td>26/1 10,00</td>
<td>28/2 6,25</td>
<td></td>
</tr>
<tr>
<td>15/1 ---</td>
<td>34/1 16,25</td>
<td>26/2 3,75</td>
<td>36/2 98,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21/2 ---</td>
<td>34/2 20,00</td>
<td>35/1 ---</td>
<td>37/1 45,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/1 0,75</td>
<td>55/2 3,75</td>
<td>37/2 81,25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/2 3,25</td>
<td>36/1 131,25</td>
<td>38/1 28,75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/1 6,25</td>
<td>38/2 70,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/2 15,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24/1 ---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31/2 ---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32/1 93,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32/2 350,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33/1 8,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub Total 17,00 540,75 147,50 205,00 383,75

Total: 1,294,00 miles de hectáreas
CUADRO 20. Jerarquización de las unidades de zonificación para el cultivo del café, y superficie encontrada para su cultivo en Panamá. (miles de hectáreas).

<table>
<thead>
<tr>
<th>(I) muy alta</th>
<th>(II) alta</th>
<th>(III) regular</th>
<th>(IV) baja</th>
<th>(V) muy baja</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/1 ---</td>
<td>11/3 ---</td>
<td>13/3 ---</td>
<td>15/2 ---</td>
<td>17/1 ---</td>
</tr>
<tr>
<td>11/2 ---</td>
<td>12/1 ---</td>
<td>14/1 16,25</td>
<td>15/3 ---</td>
<td>17/2 ---</td>
</tr>
<tr>
<td>21/1 ---</td>
<td>12/2 ---</td>
<td>14/2 22,50</td>
<td>16/1 ---</td>
<td>17/3 ---</td>
</tr>
<tr>
<td>31/1 7,50</td>
<td>12/3 ---</td>
<td>14/3 ---</td>
<td>16/2 ---</td>
<td>27/1 ---</td>
</tr>
<tr>
<td></td>
<td>13/1 ---</td>
<td>15/1 ---</td>
<td>16/3 ---</td>
<td>27/2 ---</td>
</tr>
<tr>
<td></td>
<td>13/2 ---</td>
<td>22/3 ---</td>
<td>24/3 ---</td>
<td>27/3 ---</td>
</tr>
<tr>
<td></td>
<td>13/3 ---</td>
<td>23/3 ---</td>
<td>25/1 ---</td>
<td>36/3 ---</td>
</tr>
<tr>
<td>21/2 ---</td>
<td>24/1 ---</td>
<td>6,25 25/2</td>
<td>37/1 ---</td>
<td></td>
</tr>
<tr>
<td>21/3 ---</td>
<td>24/2 ---</td>
<td>1,25 25/3</td>
<td>37/2 ---</td>
<td></td>
</tr>
<tr>
<td>22/1 ---</td>
<td>31/3 ---</td>
<td>26/1 ---</td>
<td>37/3 ---</td>
<td></td>
</tr>
<tr>
<td>22/2 ---</td>
<td>32/3 ---</td>
<td>26/3 ---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/1 ---</td>
<td>32/3 ---</td>
<td>26/3 ---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31/2 17,50</td>
<td>33/1 ---</td>
<td>34/2 33,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32/1 ---</td>
<td>33/2 ---</td>
<td>2,50 34/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33/3 ---</td>
<td>35/1 ---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34/1 12,50</td>
<td>35/2 ---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35/3 ---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36/1 ---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36/2 10,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36/3 ---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sub Total: 7,50 17,50 61,25 43,75

Total: 130,00 miles de hectáreas
CUADRO 21. Jerarquización de las unidades de zonificación para el cultivo del maíz, y superficie encontrada para su cultivo en Panamá (miles de hectáreas).

<table>
<thead>
<tr>
<th>Categoría (probabilidad de obtención de buenos rendimientos)</th>
<th>(I) muy alta</th>
<th>(II) alta</th>
<th>(III) regular</th>
<th>(IV) baja</th>
<th>(V) muy baja</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/1</td>
<td>11/3</td>
<td>12/3</td>
<td>13/3</td>
<td>14d/1</td>
<td></td>
</tr>
<tr>
<td>11/2</td>
<td>12/2 1,25</td>
<td>13/2 2,50</td>
<td>14e/2 0,50</td>
<td>14d/2</td>
<td></td>
</tr>
<tr>
<td>12/1</td>
<td>13/1</td>
<td>14e/1 1,25</td>
<td>14e/3</td>
<td>14d/3</td>
<td></td>
</tr>
<tr>
<td>21/1</td>
<td>21/2</td>
<td>21/3</td>
<td>22/3</td>
<td>24e/2</td>
<td></td>
</tr>
<tr>
<td>22/1</td>
<td></td>
<td>22/2</td>
<td>23/2</td>
<td>24e/3</td>
<td></td>
</tr>
<tr>
<td>31/1</td>
<td>7,50</td>
<td>23/1</td>
<td>23/3</td>
<td>24d/1</td>
<td></td>
</tr>
<tr>
<td>32/1</td>
<td>17,50 56,25</td>
<td>31/2 56,25</td>
<td>24e/1</td>
<td>24d/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31/3</td>
<td></td>
<td></td>
<td>24d/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32/2 63,75</td>
<td></td>
<td></td>
<td>33/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32/3</td>
<td></td>
<td></td>
<td>34d/1 10,00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33/1 10,00</td>
<td></td>
<td></td>
<td>34d/2 1,25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33/2 56,25</td>
<td></td>
<td></td>
<td>34d/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34e/1 81,25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34e/2 71,25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34e/3</td>
<td></td>
</tr>
</tbody>
</table>

Sub-Total: 26,25 60,00 130,50 163,75

Total: 380,50 miles de hectáreas
CUADRO 22. Jerarquización de las unidades de zonificación para el cultivo del maní, y área encontrada para su cultivo en Panamá (miles de hectáreas).

<table>
<thead>
<tr>
<th>Categoría</th>
<th>(I) muy alta</th>
<th>(II) alta</th>
<th>(III) regular</th>
<th>(IV) baja</th>
<th>(V) muy baja</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/1</td>
<td>1,25</td>
<td>11/3</td>
<td>12/3</td>
<td>18,75</td>
<td>13/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111,25</td>
</tr>
<tr>
<td>11/2</td>
<td>16,25</td>
<td>12/2</td>
<td>6,25</td>
<td>13/2</td>
<td>17,50</td>
</tr>
<tr>
<td>12/1</td>
<td>1,25</td>
<td>13/1</td>
<td>17,50</td>
<td>14/1</td>
<td>---</td>
</tr>
<tr>
<td>21/1</td>
<td>---</td>
<td>21/1</td>
<td>1,25</td>
<td>21/3</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22/1</td>
<td>21/3</td>
<td>22/2</td>
<td>---</td>
</tr>
<tr>
<td>31/1</td>
<td>---</td>
<td>23/1</td>
<td>31/3</td>
<td>23/2</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31/2</td>
<td>67,50</td>
</tr>
<tr>
<td>32/1</td>
<td>23,75</td>
<td>33/2</td>
<td>45,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub Total</td>
<td>18,75</td>
<td>25,00</td>
<td>178,75</td>
<td>298,75</td>
<td>6,25</td>
</tr>
</tbody>
</table>

Total: 527,50 miles de hectáreas
CUADRO 23. Jerarquización de las unidades de zonificación para el cultivo de palma aceitera, y superficie encontrada para su cultivo en Panamá. (miles de hectáreas).

<table>
<thead>
<tr>
<th>Categoría</th>
<th>probabilidad de obtener buenos rendimientos</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I) muy alta</td>
<td>(II) alta</td>
</tr>
<tr>
<td>11/1 ---</td>
<td>12/2 ---</td>
</tr>
<tr>
<td>11/2 2,50</td>
<td>13/1 8,75</td>
</tr>
<tr>
<td>12/1 1,25</td>
<td>13/2 15/2 70,00</td>
</tr>
<tr>
<td>21/1 ---</td>
<td>14/1 16/1 ---</td>
</tr>
<tr>
<td>31/1 3,75</td>
<td>21/2 16/2 ---</td>
</tr>
<tr>
<td>22/1 ---</td>
<td>24/1 ---</td>
</tr>
<tr>
<td>22/2 ---</td>
<td>24/2 ---</td>
</tr>
<tr>
<td>23/1 5,00</td>
<td>25/1 6,25</td>
</tr>
<tr>
<td>23/2 5,00</td>
<td>25/2 20,00</td>
</tr>
<tr>
<td>31/2 22,50</td>
<td>26/1 ---</td>
</tr>
<tr>
<td>32/1 1,25</td>
<td>26/2 ---</td>
</tr>
<tr>
<td>32/2 ---</td>
<td>33/2 5,00</td>
</tr>
<tr>
<td>33/1 ---</td>
<td>34/1 ---</td>
</tr>
<tr>
<td>34/2 10,00</td>
<td></td>
</tr>
<tr>
<td>35/1 137,50</td>
<td></td>
</tr>
<tr>
<td>35/2 197,50</td>
<td></td>
</tr>
</tbody>
</table>

Sub Total 7,50 45,00 481,25 17,50 237,50

Total: 788,75 miles de hectáreas
CUADRO 24. Jerarquización de las unidades de zonificación para el cultivo del poroto (*Phaseolus vulgaris*), y superficie encontrada para su cultivo en Panamá. (miles de hectáreas).

<table>
<thead>
<tr>
<th>Categoría (probabilidad de obtención de buenos rendimientos)</th>
<th>(I) muy alta</th>
<th>(II) alta</th>
<th>(III) regular</th>
<th>(IV) baja</th>
<th>(V) muy baja</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/1 --- 11/3 --- 12/3 5,00 13/3 3,75 14/3 20,50</td>
<td>11/2 --- 12/2 --- 13/2 0,75 23/3 10,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/1 --- 13/1 --- 14/1 2,50 24/3 2,50</td>
<td>21/1 --- 21/2 --- 24/2 1,25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22/1 --- 22/2 --- 31/3 --- 33/2 5,00</td>
<td>31/1 --- 23/1 --- 32/2 8,75 33/3 10,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/2 --- 33/1 12,50 34/1 135,00</td>
<td>24/1 --- 34/2 243,75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31/2 0,75</td>
<td>34/3 280,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Sub Total --- | --- | 5,75 | 28,25 | 708,00 |

Total: 742,00 miles de hectáreas
CUADRO 25. Porcentaje de área zonificada correspondiente a cada una de las categorías, para los 10 cultivos considerados en el Proyecto.

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Categoría (probabilidad de obtención de buenos rendimientos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I) muy alta</td>
</tr>
<tr>
<td>Ajonjolí</td>
<td>14,5</td>
</tr>
<tr>
<td>Algodón</td>
<td>27,0</td>
</tr>
<tr>
<td>Arroz</td>
<td>25,3</td>
</tr>
<tr>
<td>Banana</td>
<td>--</td>
</tr>
<tr>
<td>Cacao</td>
<td>1,3</td>
</tr>
<tr>
<td>Café</td>
<td>5,8</td>
</tr>
<tr>
<td>Maíz</td>
<td>--</td>
</tr>
<tr>
<td>Maní</td>
<td>3,5</td>
</tr>
<tr>
<td>Palma aceitera</td>
<td>1,0</td>
</tr>
<tr>
<td>Poroto</td>
<td>--</td>
</tr>
</tbody>
</table>
7. **Comentarios Finales**

7.1. **Sobre el grado de confianza de las zonificaciones**

El grado de confianza que puede ser dado a las zonificaciones ecológicas de cultivos realizados en el marco del Proyecto, corresponde a la que puede ser atribuida a la información primaria que se utilizó.

En el caso de la información metereológica, su grado de confianza está dado por la densidad de la red de estaciones existentes, por su distribución, así como por la precisión de los registros mismos. El grado de confianza para este tipo de información puede ser considerado como aceptable, en vista de que se hizo un esfuerzo para la eliminación de la información proveniente de localidades de registros recientes o dudosos. Por otra parte, fueron excluidas de la zonificación las áreas que tenían una muy baja densidad de estaciones de registro, como fue para la región del Darién a partir de 79° 30' W. de longitud.

En el caso de la información hipsométrica empleada, por lo general fue aceptable. En relación a la información fisioedáfica, analizada a partir del mapa de uso potencial de la tierra, el cual corresponde a una actualización y síntesis de trabajos previos, la información puede ser considerada como aceptable.

La determinación de los requerimientos ecológicos de los cultivos analizados tuvieron una precisión variable, dependiendo ésta, fundamentalmente, del tipo de índice empleado. Los índices caracterizados por variables agroclimáticas **sensu stricto**, son más precisos que los de otro tipo (de caracterización climática). Por consiguiente, a las zonificaciones que emplearon el primer grupo de índices se les podrá atribuir una más alta confiabilidad.
La confiabilidad de las zonificaciones realizadas ha podido ser comprobada, para la generalidad de los casos, al encontrar una alta correlación entre las áreas de zonificación ecológica delimitadas en el Proyecto y las áreas que actualmente están siendo explotadas con esos cultivos en forma tradicional, sin embargo, existe una superficie amplia de territorio que ha sido delimitado como ecológicamente apto para la producción, que actualmente no está siendo utilizado con los cultivos específicos señalados. Estas áreas potenciales podrán ser las que permitan la expansión agrícola.

7.2. Sobre las limitaciones de utilización de la zonificación

Las limitaciones de las zonificaciones llevadas a cabo en el Proyecto están dadas, fundamentalmente, por el número de variables medio-ambientales que han sido consideradas en el caso específico de cada cultivo. La escala cartográfica empleada de 1:500.000 no permitió incluir una serie de variables, especialmente agroclimáticas, que fueron analizadas en la tercera etapa. Esta es la razón por la cual estas zonificaciones deberán ser empleadas como una referencia biofísica que permite localizar, en el espacio geográfico panameño las macro-zonas con las mejores condiciones ecológicas para la producción de los cultivos analizados; es decir, podrá permitir ubicar las áreas susceptibles de recibir un esfuerzo concentrado para el fomento de un cultivo, pero no para elaborar en sí los proyectos específicos.

En el caso de elaboración de proyectos específicos para el fomento de un cultivo en una área determinada, será necesario elaborar estudios complementarios que incluya el análisis y la síntesis de un mayor número de variables y una expresión cartográfica mayor, éstos proporcionan la información que permite la calendarización de las diversas prácticas culturales que se recomiendan en los "paquetes tecnológicos", además de proporcionar una cuantificación de las probabilidades de obtener éxito con el cultivo.
8. Literatura citada

<table>
<thead>
<tr>
<th>FECHA DE DEVOLUCION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>