Epidemiología Cuantitativa Aplicada al Análisis de Algunas Enfermedades de Cultivos Tropicales

Tito A. Hernández T. Ramón Montoya H.

OFICINA DEL IICA EN PERU
Epidemiología Cuantitativa y su Aplicación al Análisis de Algunas Enfermedades de Cultivos Tropicales

Ing. Tito Hernández T.
Universidad Nacional Agraria de la Selva

Ing. Ramón Montoya H.
Especialista en Sanidad Vegetal

Estudio realizado dentro del Convenio de Cooperación entre el IICA y la UNAS, Facultad de Agronomía

Lima, Perú, Enero de 1987.
Los autores expresan los agradecimientos al Ing. Luis Salinas B. por su valiosa colaboración en la edición de esta publicación.
Índice

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCCION</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>CONCEPTOS GENERALES</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Concepto de epidemiología</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>La epidemiología en relación a otras ciencias</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Usos de la epidemiología</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Concepto de epidemia</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>Concepto de patosistema</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Fitometría</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>Patometría</td>
<td>11</td>
</tr>
<tr>
<td>2.8</td>
<td>Procesos epidemiológicos</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>PROCESO MONOCICLICO</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Aspectos del proceso monocíclico en los estudios epidemiológicos</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>Aspecto cuantitativo</td>
<td>14</td>
</tr>
<tr>
<td>3.3</td>
<td>Aspecto temporal</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>PROCESO POLICICLICO</td>
<td>17</td>
</tr>
<tr>
<td>4.1</td>
<td>La epidemia y su comportamiento</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>CUANTIFICACION DE EPIDEMIAS</td>
<td>17</td>
</tr>
<tr>
<td>5.1</td>
<td>Modelos para epidemias causadas por patógenos monocíclicos</td>
<td>18</td>
</tr>
<tr>
<td>5.2</td>
<td>Modelos para epidemias causadas por patógenos policíclicos</td>
<td>19</td>
</tr>
<tr>
<td>5.3</td>
<td>Estimación de los parámetros de un modelo de crecimiento</td>
<td>20</td>
</tr>
<tr>
<td>5.4</td>
<td>Área debajo de la curva de progreso de la enfermedad</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>EJEMPLOS DE CUANTIFICACION DE EPIDEMIAS MONO Y POLICICLICAS</td>
<td>22</td>
</tr>
<tr>
<td>6.1</td>
<td>Dos casos de cuantificación de epidemias causadas por patógenos monocíclicos</td>
<td>22</td>
</tr>
<tr>
<td>Caso 1</td>
<td>Marchitez vascular o traqueomicosis de la palma aceitena</td>
<td>22</td>
</tr>
<tr>
<td>Caso 2</td>
<td>Mal de Panamá del bananero</td>
<td>25</td>
</tr>
<tr>
<td>6.2</td>
<td>Dos casos de cuantificación de enfermedades causadas por patógenos policíclicos</td>
<td>25</td>
</tr>
<tr>
<td>Caso 1</td>
<td>Pudrición parda del fruto del cacao</td>
<td>25</td>
</tr>
<tr>
<td>Caso 2</td>
<td>Roya amarilla del cafeto</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>APLICACION DE MODELOS</td>
<td>30</td>
</tr>
<tr>
<td>7.1</td>
<td>Uso de los modelos epidemiológicos en estudios de resistencia a enfermedades de plantas</td>
<td>30</td>
</tr>
<tr>
<td>7.2</td>
<td>Formulación de modelos de pronóstico de enfermedades</td>
<td>31</td>
</tr>
<tr>
<td>7.3</td>
<td>Dos ejemplos de modelos de predicción de epidemias de plantas</td>
<td>33</td>
</tr>
<tr>
<td>Caso 1</td>
<td>Modelo de previsión del blister blight del té (Exobasidium vexans)</td>
<td>33</td>
</tr>
<tr>
<td>Caso 2</td>
<td>Formulación y uso de un modelo de predicción de la "roya amarilla" del cafeto para determinar épocas de aplicación de fungicidas</td>
<td>37</td>
</tr>
<tr>
<td>Caso 3</td>
<td>Consideraciones para el análisis cuantitativo de la sigatoba negra del plátano y banano</td>
<td>46</td>
</tr>
</tbody>
</table>
PRESENTACION

El desarrollo moderno de la investigación agrícola, mediante la conceptualización de los sistemas de producción, ha revivido la necesidad de considerar el proceso tecnológico como la secuencia de una serie de eventos interconectadas, coherentes y continuos.

Dentro de esa dinámica, el problema de las plagas se ha convertido en un factor de importancia por el papel que desempeñan en la relación costo-beneficio y cuyo manejo debe dirigirse con un enfoque ecológico total de las interrelaciones entre organismos bióticos y agentes abióticos.

La epidemiología ha pasado a ocupar un lugar predominante en el estudio de los agentes causales y las condiciones del hospedero, que facilitan esas interrelaciones y se ha constituido en la principal herramienta para comprender el manejo de los problemas fitosanitarios.

En nuestro medio, hasta el presente, una barrera para estudiar y comprender la dependencia de los factores que intervienen es la carencia de métodos matemáticos para evaluar y cuantificar las interrelaciones y los procesos envueltos. El avance de los sistemas computarizados ha creado la necesidad de disponer de programas y modelos para procesar la información y llegar a obtener esquemas señalizados de pronóstico, de obligado uso en tácticas de análisis de riesgos, prevención y control químico, todos los cuales deben ser combinados armoniosamente en una estrategia de manejo integrado.

Esta publicación, en su objetivo principal, procura despertar la inquietud por el tema del Análisis Matemático de Epidemias, basada en una revisión de la información que ha permanecido reservada a muy pocos especialistas, tal vez por la forma compleja como se ha presentado. Hacer accesible esta metodología a los técnicos de nuestros países, que tratan con los problemas de enfermedades en cultivos tropicales, es un objetivo específico de este documento.

Los autores y el IICA, son conscientes que el lenguaje utilizado, la nomenclatura y la codificación empleada, no son del dominio de los técnicos, precisamente por lo novedoso del tema. Pero esperan la comprensión y hacer notar, ante todo, que lo importante es el método y las posibilidades de su aplicación en nuestro medio, para llegar, en un futuro, a la unificación de criterios y métodos, que faciliten un Sistema de Información y Transferencia Tecnológica.

Igualmente expresan su reconocimiento a la Universidad Nacional Agraria de la Selva y al IICA, a través del Programa de Sanidad Vegetal, por el apoyo y facilidades brindadas para desarrollar este trabajo, agradece la orientación de los Doctores A.C. Kushalappa de Canadá.

Israel Tino G.
Director del IICA en Perú
1. INTRODUCCION

La fitopatología viene evolucionando significativamente, buscando comprender, cada vez mejor, los factores que determinan la ocurrencia de las enfermedades de plantas, para de esta manera plantear mejores métodos y estrategias de control.

Los conceptos que se presentan en este libro son complementados con algunas experiencias y observaciones obtenidas por los autores en regiones de agricultura tropical de América Latina. Se tiene la intención de introducir al lector en la mejor comprensión de los principios de la Epidemiología Cuantitativa, dando énfasis en las epidemias de enfermedades de cultivos tropicales.
2. CONCEPTOS GENERALES

Concepto de epidemiología

En su inicio, la fitopatología fue una ciencia casi exclusivamente descriptiva, de modo que se confundía con la botánica y la micología. Con el avance de la ciencia se desarrollaron nuevos conceptos y métodos de enfrentar los problemas fitopatológicos. Existen, en la actualidad, varias ramas de la Fitopatología, siendo una de ellas la Epidemiología, que trata del aumento de la cantidad de enfermedad en función del tiempo y el espacio.

En el sentido estricto de la palabra, epidemiología es definida como el tratado o estudio de las enfermedades epidemiológicas. Sin embargo varios autores han dado algunas definiciones, más o menos afines, que son necesarias llevarlas en consideración. VAN DER PLANK (1963), concep​tuó epidemiología como la ciencia de las enfermedades en poblaciones. NELSON (1978), la define como el estudio de los factores que afectan la velocidad de aumento de una enfermedad, dada por la interacción entre poblaciones de patógenos y plantas. KRANZ (1980), nos define epidemiología como el estudio de las poblaciones de los patógenos en poblaciones de plantas hospederas y de la enfermedad resultante de esa interacción, bajo la influencia del ambiente y la interferencia humana. KUSHA—LAPPA (1982), indica que en el sentido amplio, la epidemiología es el estudio del progreso de la enfermedad en el espacio y en el tiempo, en función de las interacciones entre poblaciones del hospedero, poblaciones del patógeno, y el medio ambiente.

Como notamos, en todos los conceptos anteriormente dados, el término “población” es el común denominador, de ahí que se considere a la epidemiología como la ciencia de la patología en poblaciones de plantas.

La epidemiología en relación a otras ciencias

La epidemiología es una ciencia altamente ecológica. Por usar conceptos y metodologías de la ciencia ecológica, explica las interacciones existentes a diferentes niveles de integración, considerando a una enfermedad como un proceso. Dichos niveles serían: Proceso organismal (planta-patógeno), proceso poblacional (cultivo-patógenos) y proceso comunitario (ecosistema).

Debido a que la epidemiología se ubica dentro de las ciencias de la vida, la que abarca conocimientos muy amplios, el epidemiólogo debe tener conocimiento de algunos de éstos, dándose especial mención a la Taxonomía y Fisiología Vegetal, Eco-Fisiología de Cultivos, Genética, Micología, Bacteriología, Micrología, Nematología y Ecología de Insectos. Además de las ciencias biológicas, la epidemiología tiene relación estrecha con algunas ciencias físicas y matemáticas, especialmente Meteorología, Micrometeorología y Cálculo, Estadística, y Ciencia de la Computación, que contribuye más directamente (ZADOKS y SCHEIN, 1979).

Usos de la epidemiología

Las enfermedades de plantas son controladas de varias maneras: Exclusión del patógeno, erradicación del patógeno, protección de la planta hospedera, resistencia del hospedero y terapia de la enfermedad. Como es de suponer, hay algunas variantes entre estos principios generales de control; pero la determinación de la necesidad de usar cualquiera de estos contra una enfermedad específica, depende del conocimiento sistemático del comportamiento de la epidemia, recurriendo a la epidemiología.

De acuerdo con FRY (1982), el control de una enfermedad es más eficiente cuando se consideran tres perspectivas: El manejo de la enfermedad como un componente integral del manejo del cultivo, el empleo de un sistema lógico de tecnología (resistencia, uso de productos químicos, prácticas culturales), y la comprensión precisa del potencial destructivo de la enfermedad.
Concepto de epidemia

Algunos autores limitan el término epidemia a aquellos casos en que la población de plantas hospederas es severamente atacada, o cuando hay rápido incremento de la cantidad de enfermedad. Sin embargo, FRY (1982) considera más útil el término epidemia como la dinámica de la enfermedad en una población, independientemente de la severidad y tasa de desarrollo de ésta.

ZADOKS y SCHEIN (1979) manifiestan que las epidemias son procesos, biológicos complejos. Cada proceso usualmente está compuesto en un número fácilmente identificable de subprocessos que son los ciclos de infección. Por lo tanto una epidemia, como un total, consiste de una secuencia de ciclos de infección que ocurren extensivamente, como resultado de la interacción entre una población de unidades infectivas del patógeno sobre una población de plantas hospederas, bajo un ambiente favorable.

Concepto de patosistema

Un patosistema es un subsistema del ecosistema que está definido por el fenómeno del parasitismo. En un patosistema los comportamientos de la población del hospedero así como la del patógeno son estudiados integralmente, como un solo sistema, debido a que los componentes biológicos de un patosistema vegetal (planta, agente patógeno y medio biótico) están en relación con los componentes abióticos y climáticos (ROBINSON 1980, MARQUINNA 1984).

VAN DER PLANK (1968, 1975), afirma que un hospedero más sensible, un patógeno más agresivo, y un ambiente más favorable, contribuyen a aumentar la enfermedad. Esta relación íntima entre los tres componentes (hospedante-patógeno-ambiente), fue representada, inicialmente, mediante un triángulo, al que se denominó triángulo de la enfermedad, teniendo en cada vértice uno de los componentes indicados. Años después, ZADOKS y SCHEIN (1979) sugirieron la representación de las interacciones entre los componentes de la enfermedad, por la figura del tetraedro (Fig. 1).

\[
\text{SH} \quad \text{H} = \text{hospedero} \\
\text{P} \quad \text{P} = \text{patógeno} \\
\text{A} \quad \text{A} = \text{ambiente} \\
\text{E} \quad \text{E} = \text{enfermedad} \\
\text{SH} \quad \text{SH} = \text{ser humano}
\]

Fig. 1. Representación de las interacciones entre los componentes de una enfermedad.
Como indica KRANZ (1974) la epidemiología, como una ciencia cuantitativa, analiza la relevancia de cada variable que conforma el patosistema, en forma cuantitativa. Por lo tanto, el uso de la regresión es una herramienta esencial en la investigación epidemiológica. En el análisis del patosistema es fundamental la cuantificación tanto del hospedero como de la enfermedad.

Fitometría: Cuantificación del hospedero

La información cuantitativa sobre el crecimiento de la planta hospedera, en el estudio de una epidemia, es necesaria para determinar las fases fenológicas (estados de desarrollo) en los cuales la planta es más susceptible, para, de esta manera, asociarla con la pérdida de rendimiento. Por lo tanto, las informaciones cuantitativas de los tejidos del hospedero disponibles para la infección son necesarias para comprender la tasa de desarrollo de la enfermedad. Existen diferentes escalas y métodos para estas medidas.

Estos cálculos deberán ser efectuados paralelamente, conforme se cuantifica la enfermedad en cada lectura o evaluación. Por ejemplo HERNANDEZ (1984), durante el estudio de una epidemia de la roya amarilla del café, cuantificó el desarrollo fenológico del cafeto en cuatro plantas representativas en cada parcela experimental donde se cuantificaba paralelamente la enfermedad. Se determinó el número medio total de ramas simples, por planta; para lo cual se contó inicialmente el número de ramas plagiotrópicas primarias, de las cuales se seleccionaron diez: tres en el tercio inferior, cuatro en el tercio medio, y tres en el tercio superior de la planta. En cada una de estas ramas, se marcaron todas las ramas plagiotrópicas secundarias y terciarias, y fue cuantificado, mensualmente, el aparecimiento de nuevas ramas con dos pares de hojas. Aplicando la fórmula siguiente, fue posible, entonces, cuantificar la proporción de densidad de hospedero "disponible" de ser atacado por Hemileia vastratrix cada mes:

\[PDH = \frac{(NP/m^2) \times (NF/P) \times (AREA/F)}{DH \text{ m}ax} \quad (1) \]

Donde:
- \(PDH = \) Proporción de densidad de hospedero (valor máximo = 1)
- \(NP/m^2 = \) Número de plantas por metro cuadrado de suelo.
- \(NF/P = \) Número de hojas por planta (No. de ramas por planta x número de hojas por rama).
- \(AREA/F = \) Área de una hoja = 0,005 m²
- \(DH \text{ m}ax = \) Densidad máxima que puede alcanzar el hospedero = 30 m² de suelo (variedad "catuai")

Patometría o cuantificación de la enfermedad

Cuando graficamos la curva de progreso de una epidemia (Fig. 2), la cantidad de enfermedad es cuantificada como proporción de tejido enfermo en el hospedero. Es muy importante señalar sin embargo, algunos aspectos de terminología en este asunto: JAMES (1974) indica que el término "intensidad" abarca a los términos "incidencia" y "severidad". La incidencia es evaluada por el porcentaje de plantas, frutos, etc., infectados, y la severidad por el porcentaje de tejido enfermo. El porcentaje, en ambos casos, puede ser representado como proporción (Valores de 0 - 1)

La cuantificación de una enfermedad envuelve dos etapas: 1) Muestreo de plantas o partes de plantas disponibles para infección. Cuando una planta fuese pequeña, ella es totalmente utilizada en el muestreo, por ejemplo, todos los foliolos para evaluar roya del frijol. Cuando una planta es grande, se utilizan en el muestreo, las partes representativas (por
ejemplo, ramos para evaluar la roya del cafeto, respetándose la fenología de la planta; 2) La segunda etapa es la evaluación de la severidad de la enfermedad, empleándose escalas diagramáticas. Una vez realizadas estas dos etapas, es necesario calcular la proporción acumulativa de la enfermedad, lo que nos permitirá, como se explica más adelante, estimar la tasa de infección o velocidad de aumento de la enfermedad. Esta proporción acumulativa de la enfermedad puede ser calculada por la siguiente fórmula:

$$x_t = \frac{X_{ct}}{Y_{ct}} = \frac{X_{at} + X_{cqt}}{Y_{at} + Y_{cqt}}$$

(2) $
\begin{align*}
X_{ct}: & \text{ Unidades enfermas} \\
Y_{ct}: & \text{ Unidades totales enfermas y sanas.}
\end{align*}$

FIGURA No. 2.— Curva de progreso de una epidemia o proceso polifásico, que consiste en una serie de procesos monocíclicos, que a su vez consisten en procesos contínuos: Infección (INF), Esporulación (ESP) y Desminación (DIS) causando lesiones (LES). (Adaptado de BUT/AND ROYLE, 1974).
Donde: x es proporción de enfermedad; X son unidades enfermas, Y unidades totales, enfermas y sanas; c total de unidades caídas hasta la evaluación t. Las unidades de X e Y pueden ser número de plantas, hojas, frutos, etc., o el área (cm2) de superficie de los tejidos susceptibles.

Procesos epidemiológicos
Una epidemia es la consecuencia de procesos biológicos, designados procesos epidemiológicos. Estos procesos son los ciclos de infección o ciclos de patogénesis como los denominados FRY (1982), cada ciclo de infección es denominada por ZADOKS y SCHEIN (1979) como "proceso monocíclico". Por lo tanto, una epidemia es una secuencia de procesos monocíclicos, que en conjunto, constituyen un proceso policíclico.

3. PROCESO MONOCÍCLICO

El proceso monocíclico o ciclo de patogénesis, se origina de una unidad de infección, que puede ser, tratándose de hongos, de una espora o un agregado de células (esclerocíos), denominados unidades de dispersión. Se debe indicar, sin embargo, que no todas las unidades de dispersión son unidades infectivas, porque algunas son biológicamente no viables, incapaces de causar infección.

Un proceso monocíclico está constituido de sub-procesos identificables. En el caso de Hemileia vastatrix Berk Br., se consideran los subprocesos o fases de infección, esporulación y diseminación, los que a su vez se dividen en subfases. (Ver cuadro 1). KUSHA—LAPPA (1982) denominó a las fases y subfases como macro y micro-procesos, respectivamente.

CUADRO 1.: Fases y sub-fases componentes de un ciclo de patogénesis o proceso monocíclico de Hemileia vastatrix Berk y Br.

<table>
<thead>
<tr>
<th>Fases o Macroprocesos</th>
<th>Sub-fases o Microprocesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infección</td>
<td>Germinación de uredosporas</td>
</tr>
<tr>
<td></td>
<td>Penetración</td>
</tr>
<tr>
<td></td>
<td>Colonización</td>
</tr>
<tr>
<td>Esporulación</td>
<td>Producción de uredosporas</td>
</tr>
<tr>
<td></td>
<td>Maduración de uredosporas</td>
</tr>
<tr>
<td>Diseminación</td>
<td>Liberación de uredosporas</td>
</tr>
<tr>
<td></td>
<td>Dispersión de uredosporas</td>
</tr>
<tr>
<td></td>
<td>Depósito de uredosporas</td>
</tr>
</tbody>
</table>

A. Aspectos del proceso monocíclico a considerar en los estudios epidemiológicos

La ilustración precedente del ciclo de infección fue dada en su forma simple, es decir lo que ocurre con una sola unidad de infección; sin embargo, en epidemiología, el interés se centra en la efectividad de una población de unidades de infección (uredosporas) sobre una población de plantas hospederas (cafetos).

La influencia del ambiente y de la resistencia del hospedero sobre los macro y microprocesos del proceso monocíclico es estudiada en sus dos aspectos principales, el cuantitativo y el temporal.
Aspecto cuantitativo

En una población del patógeno, los diversos macro y microprocesos pueden ser cuantificados como "razón de sobrevivencia" (RS). De acuerdo al concepto ecológico utilizado por ZADOKS y SCHEIN (1979), la RS es la razón existente entre el número de uredosporas inoculadas y el número de pústulas resultantes. Este mismo concepto es usado básicamente para evaluar el efecto de las condiciones ambientales y de la resistencia del hospedero sobre la biología del patógeno. En este sentido, la sobrevivencia después de un micro o macro proceso puede ser expresado en forma de proporción. Así, epidemiológicamente, la germinación es la razón entre el número de unidades infectivas que formaron tubo germinativo sobre el número total de estas unidades depositadas. Si colocamos 100 uredosporas a germinar y 70 de éstas logra emitir tubo germinativo, entonces se dice que la razón de sobrevivencia para un proceso monocíclico (RSPM) o ciclo de infección es de 0.32.

Aspecto temporal

El aspecto temporal del proceso puede ser expresado como promedio de tiempo transcurrido para pasar de un estado morfológico a otro inmediatamente siguiente. Por ejemplo, el tiempo de germinación es el periodo, en horas, para que una unidad infectiva (uredospora) complete el proceso de germinación. De este modo, el tiempo necesario para que una uredospora pueda germinar (período de germinación), o infectar (período de infección) inducir lesión (período de incubación), producir pústula (período latente), son aspectos temporales de los micro y macro procesos señalados.

Funciones epidemiológicas del proceso monocíclico

Las funciones epidemiológicas son fórmulas o modelos matemáticos que expresan la influencia del ambiente sobre los procesos epidemiológicos. Estas funciones pueden ser simples o complejas, cuando incluyen uno o varios elementos del ambiente, respectivamente.

El efecto de cada elemento o de combinaciones de elementos del ambiente sobre los macro o micro procesos puede ser estudiado en condiciones de laboratorio y cuantificado como razón de sobrevivencia. En estos estudios de laboratorio, se mantienen constantes los aspectos que no están siendo evaluados, variando sólo aquellos que están siendo estudiados. La literatura cita muchos ejemplos que pueden encuadrarse dentro de estos conceptos. Así KUSHALAPPA et al (1982) desarrollaron las siguientes funciones para explicar el efecto de la temperatura y el agua líquida sobre el proceso de infección de Hemiilia vastatrix, agente causal de la roya amarilla del cafeto:

$$Y_1 = 1.996 \exp (-0.1089 \, t) \quad (3)$$

$$Y_2 = \text{Sen}^2 (188.1 \, x - 41.6x^2 - 151.3x^2) \quad (4)$$

Donde:

$Y_1, Y_2 =$ Proporción del máximo de infección o lesiones observadas.
$t =$ Horas de agua líquida
$x =$ Equivalente a Schödter de temperatura

Este equivalente de Schödter de temperatura ha sido utilizado en muchos estudios sobre la influencia de la temperatura sobre los procesos de germinación e infección (FAINF) y es calculado mediante la ecuación

$$x = (t_{ob} - t_{min}) / (t_{min} - t_{máx}), \quad (5)$$

Donde: $t_{ob} =$ temperatura observada
t min, t máx = temperatura mínima y máxima requerida para la actividad biológica de inicio de germinación o infección.

KUSHALAPPA et al (1983) desarrollaron la siguiente función para explicar el efecto del clima sobre el proceso de diseminación de Hemileia vastatrix, 28 días antes de la fecha de predicción.

\[
\text{EDISA} = \frac{(E_1 + 0.5 \ E_2)}{28 \times E_3}
\]

Donde:

\(\text{EDISA} \) = Equivalente dediseminación en función del ambiente, expresado como proporción de diseminación.

\(E_1 \) = Número de días con lluvias superiores a 1 mm.

\(E_2 \) = Número de días sin lluvia con velocidad de viento superiores a 1 m/seg.

\(E_3 \) = Densidad del hospedero, expresada como área foliar disponible.

Como hemos observado, varios modelos matemáticos pueden ser utilizados para explicar los efectos del ambiente sobre los macroprocesos y microprocesos.

Las funciones o modelos pueden ser simples, incluyendo un elemento del ambiente; por ejemplo, horas de agua líquida en la ecuación 3; o pueden ser complejas, incluyendo varios elementos, por ejemplo lluvia, viento, hospedero en la ecuación 6. Los modelos matemáticos más utilizados son los lineales (regresión lineal simple o múltiple) y los no lineales (regresión polinomial logarítmica, logística, etc.). Esto demuestra que la regresión juega un papel fundamental en los estudios cuantitativos en epidemiología. Como es lógico suponer, estos modelos matemáticos o funciones epidemiológicas permiten elaborar “tablas de equivalencias”; por ejemplo la Tabla 1 muestra datos de equivalentes de temperatura y agua líquida, para explicar el microproceso de infección de H. vastatrix.
<table>
<thead>
<tr>
<th>Horas de agua líquida</th>
<th>Proporción de infección (EINFA<sub>AL</sub>)</th>
<th>Temperatura</th>
<th>Proporción de infección (EINFA<sub>T</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.00</td>
<td>13</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.07</td>
<td>14</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>0.17</td>
<td>15</td>
<td>0.04</td>
</tr>
<tr>
<td>9</td>
<td>0.25</td>
<td>16</td>
<td>0.18</td>
</tr>
<tr>
<td>10</td>
<td>0.33</td>
<td>17</td>
<td>0.35</td>
</tr>
<tr>
<td>11</td>
<td>0.40</td>
<td>18</td>
<td>0.54</td>
</tr>
<tr>
<td>12</td>
<td>0.47</td>
<td>19</td>
<td>0.71</td>
</tr>
<tr>
<td>13</td>
<td>0.52</td>
<td>20</td>
<td>0.84</td>
</tr>
<tr>
<td>14</td>
<td>0.57</td>
<td>21</td>
<td>0.93</td>
</tr>
<tr>
<td>15</td>
<td>0.62</td>
<td>22</td>
<td>0.98</td>
</tr>
<tr>
<td>16</td>
<td>0.66</td>
<td>23</td>
<td>1.00</td>
</tr>
<tr>
<td>17</td>
<td>0.69</td>
<td>24</td>
<td>0.98</td>
</tr>
<tr>
<td>18</td>
<td>0.73</td>
<td>25</td>
<td>0.91</td>
</tr>
<tr>
<td>19</td>
<td>0.76</td>
<td>26</td>
<td>0.78</td>
</tr>
<tr>
<td>20</td>
<td>0.78</td>
<td>27</td>
<td>0.58</td>
</tr>
<tr>
<td>21</td>
<td>0.81</td>
<td>28</td>
<td>0.33</td>
</tr>
<tr>
<td>22</td>
<td>0.83</td>
<td>29</td>
<td>0.08</td>
</tr>
<tr>
<td>23</td>
<td>0.85</td>
<td>30</td>
<td>0.00</td>
</tr>
<tr>
<td>24</td>
<td>0.86</td>
<td>31</td>
<td>0.00</td>
</tr>
<tr>
<td>28</td>
<td>0.92</td>
<td>31</td>
<td>0.00</td>
</tr>
<tr>
<td>32</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Ecuaciones 3 y 4 (Kushalappa et al 1982)
4. PROCESO POLICICLICO

Una serie de procesos monocíclicos constituyen un proceso policíclico. Si se considera a una epidemia como una cadena de ciclos de infección, puede inferirse que una epidemia es un proceso policíclico, que envuelve una serie de procesos monocíclicos, los que se dan en el tiempo y en el espacio.

La epidemia y su comportamiento

Una enfermedad es el resultado de la interacción de un patógeno con un hospedero susceptible en un ambiente favorable, a través del tiempo. Si el hospedero es especialmente susceptible y el ambiente favorable, un patógeno agresivo puede inducir una enfermedad severa. La naturaleza compleja de una enfermedad puede ser expresada como indica FRY (1982) mediante la siguiente expresión:

\[E_t = f(p_i, h_i, l_i) \]

Donde:
- \(E \) = Enfermedad
- \(t \) = Tiempo
- \(p_i \) = Patógeno (Capacidad del patógeno para inducir enfermedad, población del Patógeno)
- \(h_i \) = Hospedero (susceptible, distribución, población de plantas).
- \(l_i \) = Ambiente (factores físicos, químicos, biológicos)

VAN DER PLANK (1968, 1975), separó las enfermedades en dos grupos: Enfermedades de “interés simple”, y enfermedades de “interés compuesto”; haciendo analogía al aumento del capital en el banco con el aumento de enfermedad en la planta. Ejemplos del primer grupo son: carbón del maíz (Ustilago maydis), marchitez (Fusarium sp y Verticillium sp.), pudriciones causadas por Sclerotium sp, etc. En estas enfermedades, las plantas, infectadas al inicio del ciclo del cultivo, no actúan, significativamente, como fuentes de inóculo para las infecciones posteriores en una estación. Se les llama también monocíclicas. Ejemplos del segundo grupo son las enfermedades como el “hielo de la papa” (Phytophthora infestans), “roya de trigo” (Puccinia graminis), “roya del cafeto” (Hemileia vastatrix), “escoba de bruja del cacao” (Crinipellis perniciosa), “pudrición parda del fruto del cacao” (Phytophthora palmivora), en las cuales las plantas infectadas, al inicio de la estación, actúan significativamente como fuentes de inóculo para infecciones repetitivas posteriores. Se les llama también policíclicas.

Las enfermedades de “interés compuesto” entonces, son causadas por patógenos policíclicos, los que cumplen más de una generación por estación o ciclo fisiológico del cultivo. De manera que, una infección ocurrida en una planta, al inicio de su ciclo fisiológico, servirá como fuente de inóculo del patógeno para posteriores infecciones en ese mismo ciclo. Por ejemplo, el basidiomiceto Hemileia vastatrix, agente causante de la roya amarilla del cafeto, cumple un ciclo de patogénesis (Proceso monocíclico) en 20-30 días; por lo tanto, en una campaña agrícola el hongo es capaz de producir muchas generaciones, (Proceso Policíclico).

5. CUANTIFICACION DE EPIDEMIAS

La dinámica de desarrollo de una enfermedad, vista como componente de un patosistema, es compleja. La epidemiología debe recurrir a las ciencias matemáticas y de computación, que haciendo uso de los conceptos de análisis de sistemas, permiten evaluar y com-
prender la dinámica de la epidemia, mediante el uso de modelos matemáticos y tratan de representar la dinámica de desarrollo de una enfermedad en términos de ecuaciones.

Modelos para epidemias causadas por patógenos monocíclicos

La siguiente ecuación describe cómo una enfermedad resulta de la interacción entre hospedero, ambiente y patógeno monocíclico a través del tiempo.

\[X_t = QRt \]

Donde:

- \(X_t \) = Cantidad de enfermedad (proporción), en el tiempo \(t \).
- \(Q \) = Es el tamaño de la población inicial del patógeno o inóculo.
- \(R \) = Es la eficiencia del inóculo inicial, medida como tasa de incremento de la enfermedad y que sintetiza el efecto del ambiente, resistencia del hospedero, prácticas culturales y la habilidad inherente del patógeno para inducir la enfermedad.
- \(t \) = Es el tiempo en que el hospedero y patógeno interactúan en su ambiente.

La velocidad de aumento de la enfermedad monocíclica, de acuerdo con la ecuación 8, puede representarse por:

\[\frac{dx}{dt} = QR \]

Esta ecuación establece que el incremento de la enfermedad \((dx)\), durante un corto período de tiempo \((dt)\), está en función del inóculo inicial \((Q)\) y su eficiencia \((R = \text{tasa de infección o incremento de la enfermedad})\). En este análisis, la cantidad de enfermedad \((x)\) es representada como proporción de población de hospedero que está afectada, y la proporción puede ser calculada con base en la cantidad total de tejido disponible o al total del número de plantas hospederas. Consecuentemente, los valores de la proporción de tejido enfermo debe estar en un rango entre 0 y 1.0, (FRY, 1982). La figura 3 ilustra lo expresado.

FIGURA No. 3.— Curva de progreso de una enfermedad causada por un patógeno monocíclico. (tomado de FRY 1982). Se trata de la "pudrición radicular del trigo (Cochliobolus sativus)."
Puede notarse, sin embargo, que la ecuación 9 no considera un importante factor: la cantidad de tejido sano. Corrigiendo dicha ecuación para describir la influencia del tejido sano, obtenemos:

\[\frac{dx}{dt} QR (1 - x) \quad (10) \]

En la que \((1 - x)\) es el factor que explica el tejido sano disponible. Para todos los modelos de crecimiento el máximo de área susceptible para infección es 1, considerado constante durante la epidemia \(X_{max} = 1\). Sin embargo se observa que, mientras ocurre el crecimiento del hospedero, existe un aumento de masa en los tejidos susceptibles "diluyendo" la proporción de enfermedad; inconveniente que puede corregirse con el factor \((1 - x)\)

Modelos para enfermedades causadas por patógenos policíclicos

Las enfermedades causadas por patógenos policíclicos son influenciadas por la habilidad del patógeno para inducir la enfermedad, resistencia del hospedero, las condiciones ambientales incluyendo prácticas culturales tiempo en el que hospedero y patógeno interactúan, y la tasa de reproducción del patógeno (FRY 1982).

Una simple expresión matemática ayuda a comprender el comportamiento de una epidemia policíclica. En un corto período de tiempo \((dt)\) durante la estación, la tasa de enfermedad \((dx/dt)\) se incrementa en función del tamaño de la población del patógeno, de la eficacia con que esta población induce enfermedad, y con la proporción de tejido de planta disponible para el patógeno. El tamaño de la población del patógeno está en función de la cantidad de enfermedad \((x)\), debido a que el patógeno produce inóculo en el tejido enfermo. La relación entre tejido e inóculo se expresa por un factor \((r)\), el cual también describe la eficiencia del inóculo (FRY 1982). La tasa de incremento de la enfermedad entonces puede ser expresada por la siguiente ecuación y Figura 4.

\[\frac{dx}{dt} = x r (1 - x) \quad (11) \]

FIGURA No. 4.— Curva de progreso de una enfermedad causada por un patógeno policíclico.
Por ejemplo de la Roya amarilla del cafeto (*Hemileia vastatrix*).
Esta ecuación se deriva del modelo general de crecimiento logístico dado por la ecuación:

\[x = \frac{1}{1 + b \exp(-rt)} \] \hspace{1cm} (12)

Donde:

- \(x \) = Proporción de enfermedad en el rango de 0–1
- \(b \) = \(\left(\frac{x_{\text{máx}}}{x_0}\right) - 1 \)
- \(r \) = Tasa
- \(t \) = Tiempo

Cuya ecuación de transformación es:

\[\text{logit} (x) = \ln \left(\frac{x}{(1-x)}\right) \] \hspace{1cm} (13)

Como vemos, la ecuación 11 es similar a la ecuación 10, que describe el incremento de la enfermedad inducida por un patógeno monocíclico, en que ambas tienen el factor \((1 - x) \) o tejido disponible. Sin embargo difiere en que el inóculo (Q) es constante en el patógeno monocíclico, pero variable (x) en el patógeno policíclico.

Sin embargo BERGER (1980), demostró que otras transformaciones pueden ser más apropiadas para estimar los parámetros epidemiológicos, debido a que no todas las curvas de progreso de la enfermedad se ajustan al modelo logístico propuesto por VAN DER PLANK (1963). ANALYTIS (1973) por ejemplo, utilizó los siguientes modelos de crecimiento para cuantificar con el progreso de la enfermedad "sarna" de la manzana (Venturia inaequalis):

- Logística: \(x = \frac{1}{1 + b \exp(-rt)} \) \hspace{1cm} (14)
- Gompertz: \(x = \exp(-b\exp(-rt)) \) \hspace{1cm} (15)
- Monomolecular: \(x = 1 - b \exp(-rt) \) \hspace{1cm} (16)
- Weibull: \(x = 1 - \exp\left(\frac{(t-a)}{b}\right)^c \) \hspace{1cm} (17)

En estudios para cuantificar el comportamiento de la roya amarilla del café, Hemi-
leia vastatrix, HERNANDEZ (1984), demostró que el modelo Gompertz explicaba mejor, la curva de progreso de la enfermedad, antes que los modelos logístico y monomolecular.

Todo esto permite afirmar que antes de calcular los parámetros epidemiológicos, como la tasa de infección (r), u otro, se debe, previamente (mediante análisis de regresión no li-
neal), determinar a qué modelo de crecimiento, de los antes descritos, la curva de progres-
so de la epidemia en estudio se ajusta mejor. Esta indicación la da, como se sabe, el coefi-
ciente de determinación (R^2).

Estimación de los parámetros de un modelo de crecimiento

Como apunta FRY (1982), para estudiar las epidemias mono y policíclicas, necesi-
tamos calcular sus parámetros epidemiológicos (Q y R en la ecuación 10; y, x y r en la ecua-
ción 11) Para esto, lo primero que debe hacerse es evaluar la epidemia durante el tiempo.

Luego, registrando la proporción (0–1) de tejido afectado, en relación al tiempo, se
construye una curva de progreso de la enfermedad.

La forma, para una enfermedad monocíclica, es una curva de saturación (Fig. 3), y la
forma sigmoidé corresponde a la curva de progreso de una enfermedad policíclica (Fig. 4).
Si los datos de proporción de enfermedad (x) lo transformamos para LN (1/(1-x)), tratándose
de enfermedades monocíclicas, o para LN (x/(1-x)), en caso de ser policíclicas, podemos, en-
tonces, linearizar las curvas respectivas, con la finalidad de calcular su inclinación o pendien-
te, usando análisis de regresión. Como ya se indicó, se usa 1/(1-x) para enfermedades mo-
ocíclicas porque el inóculo no se incrementa durante la estación; pero usamos x/(1-x) para
enfermedades policíclicas porque el inóculo (x en diferentes tiempos) se incrementa durante la estación. La inclinación de la línea resultante de graficar LN (1/(1 - x)) contra el tiempo es QR y si Q es conocido podemos calcular R. Si colocamos LN (x/(1 - x)) contra el tiempo, la inclinación de la curva es r, llamada “tasa de infección aparente” por VAN DER PLANK (1963).

El procedimiento anteriormente descrito para el cálculo de los parámetros R y r, es simple, y es la forma más común como los investigadores estudian el comportamiento de las epidemias. Sin embargo, como señalan algunos autores (HERNÁNDEZ, 1984; BERGER, 1980; KRANZ, 1978), esta forma de estimación de los parámetros puede llevar a cometer errores, considerando que tanto los valores de Q y x pueden ser sobreestimados en el cálculo de r; por ejemplo cuando se ajusta la curva logística usando análisis de regresión lineal simple.

Por lo anteriormente expuesto adquieren valor, las recomendaciones dadas por varios investigadores, de probar, previamente, de acuerdo con el coeficiente de determinación (R²), cual de los modelos matemáticos explican mejor la curva de progreso de la enfermedad en estudio; para ello, se procede así:

Primero.— Cuantificar la proporción de enfermedad (x) en las diferentes evaluaciones, expresarla en forma acumulativa y graficarla contra el tiempo a fin de diseñar una curva de progreso de la enfermedad.

Segundo.— Los valores de x, en cada una de las lecturas realizadas, durante el transcurso de la epidemia (xᵣ), se dividen entre el valor de la cantidad de tejido máximo que alcanzó el hospedero en la última evaluación (Y máx). De esta manera obtenemos valores de proporción de la enfermedad corregida para el crecimiento del hospedero. Esto se resume por la ecuación:

\[x' = x_t/Y \text{ máx.} \] \hspace{1cm} (18)

donde \(x' \) = Proporción de enfermedad corregida para crecimiento de hospedero.

\(x_t \) = Proporción de enfermedad en cualquier tiempo t.

Y \(\text{máx} \) = Número de hojas, frutos, ramas, etc. (máximos) alcanzados por el hospedero.

Tercero.— Calcular logit \(x' \); monit \(x' \); o gompit \(x' \), tratando de usar el modelo logístico, monomolecular, o gompertz, respectivamente; usando sus ecuaciones de transformación:

\[\text{logit } x' = \ln \left(x'/(1 - x') \right) \] \hspace{1cm} (19)

\[\text{monit } x' = \ln \left(1/(1 - x') \right) \] \hspace{1cm} (20)

\[\text{gompit } x' = - \ln \left(- LN (x') \right) \] \hspace{1cm} (21)

Colocando estos datos contra los de tiempo (t), y mediante análisis de regresión lineal simple, calcularemos la inclinación de la curva (b = r) y el coeficiente de determinación (R²) que nos indicará cual es el modelo adecuado.

Cuarto.— Por análisis de regresión no lineal, y usando algún programa de computación que permita estos cálculos es posible con mayor eficiencia; estimar los datos, de \(x' \), contra el tiempo (t), bajo los modelos logístico, gompertz, monomolecular, etc. y la inclinación de la curva, o sea el parámetro (r) de las ecuaciones 14, 15, 16 y 17, que representa la tasa de infección corregida para crecimiento del hospedero (p'), ver KUSHALAPPA (1982) y HERNÁNDEZ (1984).
Área debajo de la curva de progreso de la enfermedad

Además de la tasa de infección, el área debajo de la curva de progreso de la enfermedad es un parámetro generalmente usado en epidemiología comparativa (SHANER y FINNEY 1977; HERNANDEZ 1984, 1986), y es calculado por la fórmula:

\[
ACPE = \sum_{i=1}^{n} \left[\frac{(Y_{i+1} + Y_{i})}{2} \right] \left[X_{i+1} - X_{i} \right]
\]

(22)

Donde:
\[Y_{i} = \] Proporción de enfermedad en la enésima observación
\[X_{i} = \] Tiempo en la enésima observación,
\[n = \] Número total de observaciones.

Recientemente KUSHALAPPA (1984) y HERNANDEZ (1984), han indicado que la relación entre el parámetro ACPE y el área debajo de la curva de crecimiento del hospedero, da como resultado un nuevo parámetro denominado PROPORCIÓN DE AREA DEBAJO DE LA CURVA DE PROGRESO DE LA ENFERMEDAD INTRÍNSECA, dado por la fórmula:

\[
PACPEI = \frac{ACPEI}{ACCH}
\]

(23)

Donde:
PACPEI = Proporción de área debajo de la curva de progreso de la enfermedad intrínseca.
ACPEI = Área debajo de la curva de progreso de la enfermedad intrínseca.
ACCH = Área debajo de la curva de crecimiento del hospedero.

Tanto el ACPEI como el ACCH son calculados en base a la ecuación 22, que fue propuesta por SHANER y FINNEY (1977).

6. EJEMPLOS DE CUANTIFICACIÓN DE EPIDEMIAS MONO Y POLICICLICAS

Con la finalidad de ilustrar al lector sobre lo expresado en la sección 5, relativa a la cuantificación de epidemias, se han seleccionado datos sobre algunos experimentos, en los cuales se calculó el comportamiento de dos enfermedades causadas por patógenos monocíclicos, y dos causadas por patógenos policíclicos.

Cuantificación de epidemias causadas por patógenos monocíclicos

El “Mal de Panamá” en el cultivo del banano, causado por el hongo Fusarium oxysporum f.sp. cubense y la “traqueomicosis”, en el cultivo de la palmera aceitera, causado por el hongo Fusarium oxysporum f.sp. Elaeidis, son dos enfermedades tropicales de importancia económica, que causan marchitez, y se consideran como enfermedades monocíclicas o de “interés simple”, debido a que su aumento es principalmente limitado al inóculo inicial, ya que las plantas enfermas no son fuente de inóculo para el resto de la plantación, en un determinado período o ciclo de cultivo, de manera que su crecimiento no es exponencial.

Para cuantificar estas epidemias, consideramos a toda la planta enferma y no a una parte de ésta, como unidad de muestreo.

CASO 1.— Marchitez vascular o traqueomicosis de la palma aceitana

El cuadro 2 muestra los porcentajes de plantas con “traqueomicosis” a través del tiempo, durante el experimento realizado por RENARD et al (1972).
CUADRO 2.— Evaluación del porcentaje de la enfermedad de la "trraqueomicosis" de la palma aceitera durante nueve meses.

<table>
<thead>
<tr>
<th>Porcentaje (o/o)</th>
<th>Porporción (x)</th>
<th>Mes (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0.12</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>0.15</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>0.24</td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>0.27</td>
<td>5</td>
</tr>
<tr>
<td>28</td>
<td>0.28</td>
<td>6</td>
</tr>
<tr>
<td>29</td>
<td>0.29</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>0.30</td>
<td>8</td>
</tr>
<tr>
<td>31</td>
<td>0.31</td>
<td>9</td>
</tr>
</tbody>
</table>

Como notamos en el Cuadro 2, es conveniente expresar los porcentajes en términos de proporción de plantas enfermas, ya que sólo de esta forma será posible calcular los parámetros que indican el comportamiento de la epidemia, tal como la tasa de infección.

Con base en estos datos, si colocamos los valores de proporción de enfermedad (x) contra el tiempo (mes), obtendremos la curva de progreso de la enfermedad, como se muestra en la figura 5.

La curva de saturación obtenida se ajusta al modelo de crecimiento monomolecular de la enfermedad. Esta curva se convierte en línea recta, transformando cada uno de los valores de proporción de la enfermedad (x).

A su vez, esta linearización o ajuste de la curva monomolecular, se realiza usando algún programa de regresión no lineal de computarización utilizando la ecuación que explica el modelo molecular.

FIGURA No. 5.— Evolución de la fusariosis en plántulas de palma aceitera. A. Curva de progreso de la enfermedad; B. Transformación monomolecular. (Datos tomados de RENARD et al, 1972).
FIGURA 6.— Progreso de una epidemia del Mal de Panamá en banano (Fusarium oxysporum f sp. cubense). A. Curva de progreso de la enfermedad; B. Linearización de la curva por transformación monomolecular. (HER—NANDEZ, 1982)
CASO 2.— "Mal de Panamá" del bananero

De un ensayo realizado por el autor, para cuantificar el comportamiento de una epide- mia del "mal de Panamá", en una región tropical del Perú, fue posible obtener datos de pro- porción de la enfermedad durante un ciclo de producción, desde la siembra hasta la cosecha de las plantas, en una parcela de 200 matas de la variedad "Isla" (ABB), y en la que no se hicieron labores de prevención o control de esta enfermedad. Dicho ensayo fue conducido en 1981, en la localidad de Aguaytía, departamento de Ucayali, donde la enfermedad se presenta con características epidémicas. Los resultados se presentan en el cuadro 3.

CUADRO 3.— Evolución de la enfermedad "mal de Panamá" en bananas de la variedad, Isla, durante 1981.

<table>
<thead>
<tr>
<th>Evaluación (t)</th>
<th>Porcentaje de plantas enfermas (o/o)</th>
<th>Porporción de enfermedad (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>0.09</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>0.20</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>0.30</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>0.35</td>
</tr>
<tr>
<td>8</td>
<td>38</td>
<td>0.38</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>0.39</td>
</tr>
<tr>
<td>10</td>
<td>39</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Si colocamos los valores de x frente a los de t, obtenemos la curva de progreso de la enfermedad, como en la figura 3. Dicha curva es linearizada cuando transformados los valores de x por LN (1/(1-x)), como se muestra en la figura 6.

Dos casos de cuantificación de enfermedades causadas por patógenos policíclicos

A continuación se presentan dos ejemplos de cuantificación de epidemias causadas por patógenos policíclicos: a) la “pudrición del fruto” del cañamo, incitada por el hongo Phytophthora palmivora, y b) la “roya amarilla” del cafeto, incitada por el hongo Hemileia vastatrix, a la que daremos especial atención. Como sabemos, ambas enfermedades son de importancia significativa en estos dos cultivos tropicales. En el primer caso las unidades de muestreo son los frutos, y, en el segundo, las hojas.

CASO 1.— "Pudrición parda" del fruto del cacao

Para este ejemplo se han tomado los datos presentados por MULLER (1974) sobre el comportamiento de la enfermedad durante el experimento realizado entre 1957-1958. El Cuadro 4 muestra dichos datos.
CUADRO 4. — Progreso de la enfermedad "Pudrición del fruto" del cacao (*Phytophthora palmivora*) a nivel de tronco y rama.

<table>
<thead>
<tr>
<th>Semana</th>
<th>Porcentaje Acumulado</th>
<th>Proporción de Enfermedad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tronco</td>
<td>Rama</td>
</tr>
<tr>
<td>1</td>
<td>0.12</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.80</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>0.82</td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>3.06</td>
<td>0.06</td>
</tr>
<tr>
<td>5</td>
<td>4.50</td>
<td>0.07</td>
</tr>
<tr>
<td>6</td>
<td>5.00</td>
<td>0.09</td>
</tr>
<tr>
<td>7</td>
<td>5.50</td>
<td>0.09</td>
</tr>
<tr>
<td>8</td>
<td>6.10</td>
<td>0.11</td>
</tr>
<tr>
<td>9</td>
<td>6.61</td>
<td>0.14</td>
</tr>
<tr>
<td>10</td>
<td>7.08</td>
<td>0.23</td>
</tr>
<tr>
<td>11</td>
<td>7.90</td>
<td>0.46</td>
</tr>
<tr>
<td>12</td>
<td>8.56</td>
<td>0.67</td>
</tr>
<tr>
<td>13</td>
<td>8.97</td>
<td>0.77</td>
</tr>
<tr>
<td>14</td>
<td>9.40</td>
<td>0.96</td>
</tr>
<tr>
<td>15</td>
<td>11.42</td>
<td>1.18</td>
</tr>
<tr>
<td>16</td>
<td>13.56</td>
<td>1.81</td>
</tr>
<tr>
<td>17</td>
<td>16.46</td>
<td>2.85</td>
</tr>
<tr>
<td>18</td>
<td>18.10</td>
<td>5.03</td>
</tr>
<tr>
<td>19</td>
<td>19.95</td>
<td>9.00</td>
</tr>
<tr>
<td>20</td>
<td>23.91</td>
<td>17.63</td>
</tr>
<tr>
<td>21</td>
<td>27.37</td>
<td>26.82</td>
</tr>
<tr>
<td>22</td>
<td>29.28</td>
<td>35.20</td>
</tr>
<tr>
<td>23</td>
<td>30.31</td>
<td>41.14</td>
</tr>
<tr>
<td>24</td>
<td>31.13</td>
<td>48.83</td>
</tr>
<tr>
<td>25</td>
<td>31.58</td>
<td>54.54</td>
</tr>
<tr>
<td>26</td>
<td>31.87</td>
<td>59.16</td>
</tr>
<tr>
<td>27</td>
<td>32.14</td>
<td>65.50</td>
</tr>
<tr>
<td>28</td>
<td>32.18</td>
<td>66.37</td>
</tr>
<tr>
<td>29</td>
<td>32.23</td>
<td>67.20</td>
</tr>
<tr>
<td>30</td>
<td>32.23</td>
<td>67.50</td>
</tr>
<tr>
<td>31</td>
<td>32.23</td>
<td>67.65</td>
</tr>
<tr>
<td>32</td>
<td>32.23</td>
<td>67.70</td>
</tr>
<tr>
<td>33</td>
<td>32.23</td>
<td>67.75</td>
</tr>
<tr>
<td>34</td>
<td>32.23</td>
<td>67.75</td>
</tr>
<tr>
<td>35</td>
<td>32.23</td>
<td>67.75</td>
</tr>
<tr>
<td>36</td>
<td>32.23</td>
<td>67.78</td>
</tr>
</tbody>
</table>

Fuente: MULLER (1974)
FIGURA 7.— Evolución de la pudrición de la mazorca del cacao (*Phytophthora palmivora*), sobre ramas y tronco. A. Curvas de progreso de la enfermedad; B. Linealización de las curvas por transformación logística.
Con estos datos, el mencionado investigador gráfico la curva de progreso de la enfermedad, como se indica en la figura 7.

Como se observa en la figura 7, la curva de progreso de la enfermedad tiene la forma sigmoidal típica.

Transformando cada uno de los valores de proporción de enfermedad (x) del cuadro, usando la fórmula Logit \(x = \text{LN} \left(\frac{x}{1-x} \right) \), dicha curva será linearizada, y mediante análisis de regresión lineal entre los valores de proporción transformados y del tiempo (t), será posible estimar la inclinación de la curva, que equivale, epidemiológicamente, a la tasa de infección aparente (r).

Caso 2.— “Roya amarilla” del cafeto

HERNÁNDEZ et al (1986), evaluaron el comportamiento epidémico de la “roya amarilla” del cafeto (Hemileia vastatrix, Berk & Br), durante dos años, con la finalidad de cuantificar su desarrollo en tres zonas altimétricas, tal como se conduce el cafeto en el Perú y en otros países del área andina.

Se han seleccionado algunos datos obtenidos en este estudio, con la finalidad de ilustrar brevemente la manera como fueron calculados los parámetros epidemiológicos explicados en la sección 5. El cuadro 5 muestra los valores de proporción de enfermedad acumulados durante el periodo octubre 1983-1984, en las tres zonas altimétricas en estudio (ubicadas a 670, 1,100 y 1,600 msnm).

El parámetro TASA DE INFECCION de la enfermedad se calculó a partir de los datos de proporción de la enfermedad dados en el cuadro, que al confrontarlos con el tiempo, originaron la gráfica de la curva de progreso de la enfermedad. Luego, los datos de proporción de la enfermedad (x) fueron transformados a \(\text{LN} \left(\frac{x}{1-x} \right) \) y colocados frente al tiempo (lecturas cada 15 días), lo que permitió calcular, por análisis de regresión lineal, la inclinación de la curva de progreso de la enfermedad o tasa de infección (r).

<table>
<thead>
<tr>
<th>Evaluación</th>
<th>Zona baja</th>
<th>Zona media</th>
<th>Zona alta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.20</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>0.38</td>
<td>0.14</td>
<td>0.09</td>
</tr>
<tr>
<td>3</td>
<td>0.39</td>
<td>0.23</td>
<td>0.13</td>
</tr>
<tr>
<td>4</td>
<td>0.40</td>
<td>0.24</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>0.41</td>
<td>0.25</td>
<td>0.19</td>
</tr>
<tr>
<td>6</td>
<td>0.42</td>
<td>0.27</td>
<td>0.21</td>
</tr>
<tr>
<td>7</td>
<td>0.43</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>8</td>
<td>0.43</td>
<td>0.30</td>
<td>0.23</td>
</tr>
<tr>
<td>9</td>
<td>0.43</td>
<td>0.33</td>
<td>0.23</td>
</tr>
<tr>
<td>10</td>
<td>0.45</td>
<td>0.35</td>
<td>0.24</td>
</tr>
<tr>
<td>11</td>
<td>0.45</td>
<td>0.42</td>
<td>0.24</td>
</tr>
<tr>
<td>12</td>
<td>0.45</td>
<td>0.43</td>
<td>0.24</td>
</tr>
<tr>
<td>13</td>
<td>0.50</td>
<td>0.43</td>
<td>0.24</td>
</tr>
<tr>
<td>14</td>
<td>0.54</td>
<td>0.43</td>
<td>0.25</td>
</tr>
<tr>
<td>15</td>
<td>0.56</td>
<td>0.44</td>
<td>0.25</td>
</tr>
<tr>
<td>16</td>
<td>0.56</td>
<td>0.44</td>
<td>0.25</td>
</tr>
<tr>
<td>17</td>
<td>0.58</td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>18</td>
<td>0.58</td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>19</td>
<td>0.58</td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>20</td>
<td>0.59</td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>21</td>
<td>0.59</td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>22</td>
<td>0.59</td>
<td>0.45</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Además de la tasa de infección se determinó el AREA DEBAJO DE LA CURVA DE PROGRESO DE LA ENFERMEDAD (ACPE), con el fin de tener una idea más completa sobre el comportamiento de la enfermedad, para lo cual fue usada la ecuación 22.

Los resultados sobre el comportamiento de la enfermedad, se dan en el cuadro 6.

CUADRO 6.— Tasa de infección, área debajo de la curva de progreso de la epidemia (ACPE) de la "roya amarilla" del cafeto, e inóculo inicial, observados en tres zonas altimétricas—Perú.

<table>
<thead>
<tr>
<th>Zona Altimétrica</th>
<th>Tasa de Infección</th>
<th>Inóculo</th>
<th>ACPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona baja (670 msnm)</td>
<td>0.108</td>
<td>0.20</td>
<td>140.7</td>
</tr>
<tr>
<td>Zona media (1,100 msnm)</td>
<td>0.130</td>
<td>0.04</td>
<td>104.6</td>
</tr>
<tr>
<td>Zona alta (1,600 msnm)</td>
<td>0.160</td>
<td>0.04</td>
<td>63.8</td>
</tr>
</tbody>
</table>

La tasa de infección es un parámetro comúnmente usado por los investigadores en el análisis cuantitativo de epidemias; sin embargo, como se observa en el cuadro 6, encuentra limitaciones cuando la cantidad de inóculo inicial difiere significativamente entre tratamientos. En este caso, y para evitar confusiones, se calculó el ACPE, quedando demostrado que
la cantidad de enfermedad es mayor en la zona baja y menor en las zonas media y alta, a pesar de que los valores de tasa de infección no se correspondan.

7. APLICACIÓN DE LOS MODELOS

Quien se dedica al estudio de modelos matemáticos, debe tener siempre en mente, que, un modelo es una abstracción del mundo real, como apunta BERGAMIN (1978); es una aproximación simplificada de la realidad, sin pretender ser una réplica de ésta; lo cual significa que, difícilmente, un modelo pueda ser completo. Los modelos epidemiológicos se estudian con el objeto de entender mejor lo que ocurre en el campo, cuantificar el progreso de epidemias, prever las epidemias, y, principalmente, tornar los medios de control existentes más eficientes, así como la formulación de nuevas estrategias.

Uso de los Modelos Epidemiológicos en Estudios de Resistencia a Enfermedades de Plantas.

La resistencia de las plantas a los patógenos, fue clasificada por VAN DER PLANK (1968, 1975, 1982) en: RESISTENCIA VERTICAL, y RESISTENCIA HORIZONTAL, basado en la susceptibilidad del hospedero a diferentes razas del patógeno.

La resistencia vertical es también denominada resistencia específica, y se presenta cuando las variedades de un hospedero reaccionan diferente a distintas razas del patógeno. Se dice, en este caso, que ellas varían en virulencia pero no en agresividad.

La resistencia horizontal, llamada también no específica o resistencia de campo, o epidemiológica, o cuantitativa, o resistencia que reduce la tasa de infección, se presenta cuando las variedades del hospedero reaccionan igual a todas las razas del patógeno. Se dice en este caso que ellas varían en agresividad, pero no en virulencia.

Para explicar lo que es resistencia vertical, imaginémonos dos campos de papas, ubicados uno al lado del otro; en uno de ellos crece una variedad sin ningún gen de resistencia vertical, y en el otro una variedad con el gen R1, que confiere resistencia a determinadas razas del hongo Phytophthora infestans. Supongamos que cierto tiempo después, una lluvia de esporas de hongo invade ambos campos, siendo que el 99 o/o pertenece a las razas que no pueden infectar la variedad con R1 (razas 0; 2; 3; 4; 2; 3; 2; 4; etc.) y el 1 o/o restante pertenece a las razas que pueden infectar ambos campos (razas 1; 1; 2; 1; 3; 1; 4; etc.). Para este último grupo de razas, el campo con el gen R1 es tan susceptible como el campo sin R. Esto indica que el número de lesiones iniciales, consecuencia del primer ciclo de patogénesis o proceso monocíclico, va a ser 100 veces mayor en el campo sin el gen R1 que en el campo con este. De estas lesiones iniciales el hongo comienza a diseminarse y los ciclos de infección se repiten (proceso polícíclico) dando lugar a la epidemia. La figura 11 grafica este comportamiento epidémico, que corresponde a la resistencia vertical (RV). Por lo tanto el efecto epidemiológico de la RV se da por el atraso del inicio de la epidemia, debido a que este tipo de resistencia actúa sobre el inóculo inicial, (Q, en la ecuación 10 de la sección 5).

Con la resistencia horizontal (RH) ocurre una situación diferente, pues a pesar de ser efectiva contra todas las razas, se manifiesta por una disminución del tamaño de las lesiones producidas por el patógeno, aumenta el período de latencia o de incubación, disminuye el número de esporas producidas por lesión, etc. Todos esos efectos parciales que son influenciados por las condiciones ambientales, en suma, producen una reducción en la tasa de desarrollo de la enfermedad o tasa de infección (r, en las ecuaciones 11 y 12 de la sección 5).
La resistencia horizontal (RH) puede ser cuantificada, por lo tanto, expresando los micro y macro procesos de un proceso monocíclico, en sus aspectos cuantitativo y temporal como: prolongación del período de incubación o latencia. Por ejemplo algunas líneas del cafeto variedad “Catimor” presentan niveles de resistencia horizontal a *Hermilea Vastatrix*, expresada por el menor número de lesiones por hoja y mayor período de latencia, en comparación a la variedad “Mundo Novo”. La otra manera de expresar la RH es mediante el parámetro TASA DE INFECCION (r); para lo cual debe evaluarse el comportamiento de la epidemia, en las variedades que se están probando a través del tiempo y calculando el valor de r (inclinación de la curva) como se ilustra en la figura 9.

Formulación de modelos de pronóstico de enfermedades

KRAUSE y MASSIE (1975) indican que una de las principales metas de la epidemiología es el entendimiento epidemiológico de las interacciones patógeno-hospedero-ambiente, buscando el control de las enfermedades de plantas en forma económica y eficiente.

En los últimos 20 años, el uso de modelos matemáticos y técnicas de simulación de epidemias de enfermedades de plantas han aumentado significativamente. Estas técnicas, basadas en los conceptos desarrollados por VAN DER PLANK (1963), ha aumentado las posibilidades de usar, convenientemente, los principios epidemiológicos en las estrategias de control.

Existen dos métodos de predicción o pronóstico de enfermedades: *Método empírico*: basado en la experiencia del observador, y que consiste en correlacionar los resultados del control de la enfermedad, en un lugar determinado, con los factores climáticos; y *Método fundamental*: basado en datos provenientes de la investigación científica. Este método utiliza los resultados de la investigación obtenidos en el laboratorio, referentes al efecto de los diferentes factores del clima sobre el patógeno y el hospedero, los que son interpretados de acuerdo a la biología del patógeno y con la variación en la susceptibilidad del hospedero; y toda esta información se relaciona con el clima del lugar.

De acuerdo con KUSHALAPPA (1984) y HERNANDEZ (1984), pronóstico es la previsión de un futuro evento o condición. El pronóstico de una enfermedad, mediante un modelo fundamental, envuelve las siguientes actividades durante su formulación:

1) Estudiar la biología del patógeno y desarrollar funciones epidemiológicas (ecuaciones que explican el efecto del ambiente) para los diferentes macro y micro-procesos como Infección, esporulación y diseminación en el primer caso; y de germinación, penetración, colonización, formación de esporas, liberación y depósito de esporas, en el segundo. El efecto de cada elemento del ambiente, o de la combinación de éstos, sobre los macro y micro procesos, es estudiado en condiciones de laboratorio, donde se mantienen constantes los aspectos que no están siendo evaluados, variando sólo aquellos que están siendo probados. Este efecto del ambiente es cuantificado como “razón de sobrevivencia” o como períodos necesarios para la realización de estos procesos.

2) Cuantificar la tasa de desarrollo de la enfermedad y del hospedero en el campo; cuantificar el microclima; transformar los parámetros meteorológicos en razones de sobrevivencia en base a funciones epidemiológicas para el patógeno, desarrollados tal como fue explicado anteriormente,

3) Correlacionar la tasa de infección con las funciones epidemiológicas y las razones de sobrevivencia, e identificar las variables más importantes por medio de modelos matemáticos, como análisis de regresión, y establecer un sistema de previsión.

31
FIGURA 8. — Efecto de la resistencia vertical (RV) sobre el desarrollo de epidemias. La RV actúa sobre el inóculo inicial, retardando el inicio de la epidemia (Δt).

FIGURA 9. — Efecto de la resistencia horizontal (RH) Las variedades B y C muestran diferentes niveles de resistencia horizontal. El efecto de la RH es sobre la tasa de infección.
4) Correlacionar la tasa de desarrollo de la enfermedad con la pérdida en rendimiento (pérdida económica); cuantificar la reducción en la tasa de infección por las diversas aplicaciones de fungicidas.

5) Prever la intensidad de la enfermedad, en base a parámetros escogidos para previsión, y notificar a los agricultores de las medidas, las cuales puede ser simples o complejas, positivas o negativas (aplicar o no fungicidas).

Dos ejemplos de modelos de predicción de epidemias de plantas

Se presentan, a continuación, dos casos de modelos de predicción, y su uso en el manejo de dos enfermedades tropicales importantes.

CASO 1.— Modelo de previsión del “blister blight” del té (Exobasidium vexans)

Desde su centro de origen, el sudeste asiático, el cultivo del té, Camellia sinensis, ha sido introducido en regiones que presentan condiciones ecológicas que van desde los climas fríos hasta los calientes y húmedos tropicales. Este cultivo agroindustrial viene alcanzando relativo éxito en América Latina, especialmente en Argentina, Brasil y Perú.

Exobasidium vexans, es un parásito obligatorio de la planta de té y es causante de una enfermedad foliar llamada “mal de ampollas” o más comúnmente, “blister blight”. Esta enfermedad, aún no presente en áreas teñereras latinoamericanas, puede causar pérdidas entre 25 y 50 o/o, como en el caso de Ceylán, donde el té fuera implantado como sustituto del cultivo de café, prácticamente devastado por Hemileia vastatrix.

Las unidades infectivas del hongo son basidiosporas producidas sobre basidios en la cara inferior de las hojas o brotes tiernos.

Después de varios años de estudios, KERR y RODRIGO (1967) y KERR y SILVA (1969), entre otros, demostraron que el comportamiento de la enfermedad era determinado, principalmente, por los macroprocesos de infección y esporulación. Una vez identificados estos macroprocesos epidemiológicos, fue determinado que el número de esporas depositadas en las hojas (microproceso de deposición) estaba en relación directa con el número de esporas en el aire (microproceso de dispersión), y el número de lesiones (proceso monocíclico) por 100 brotes, la duración de agua líquida sobre la superficie foliar (equivalente de agua líquida para infección), y la media diaria de horas de sol (equivalente de horas de sol para esporulación, ver ecuación 6), para 2-3 semanas (período de latencia del hongo) antes de la fecha de predicción (FP).

El modelo de predicción de la enfermedad propuesto por KERR y colaboradores (1967, 1969) y que mostró ser altamente eficiente, fue planteado mediante la ecuación:

\[Y = 1.8324 + 0.8439 \times x_1 + 0.0665 \times x_2 - 0.1031 \times x_3 \] \hspace{1cm} (24)

Donde: \(Y = \log \) del número de lesiones por 100 brotes.

\(x_1 = \log \) de la raíz cuadrada del porcentaje de infección en el tiempo \(t_2 \)

\(x_2 = \log \) de la raíz cuadrada del porcentaje de infección en el tiempo \(t_2 \) menos aquel correspondiente al tiempo \(t_1 \).

\(x_3 = \) Promedio diario de luz solar para el período considerado entre \(t_1 \) y \(t_2 \).
Identificados los factores que explican, matemáticamente mejor el comportamiento de la enfermedad, mediante trabajos en laboratorio y casa de vegetación, la siguiente etapa es probar la eficiencia del modelo bajo condiciones de campo, habiéndose procedido, en el presente caso, del modo siguiente:

1.- **Cuantificación del inóculo.**— El inóculo puede ser expresado como el número de lesiones por 100 brotes, o como porcentaje de infección en la tercera hoja (ver Fig. 10).

Otra forma en que el inóculo puede ser cuantificado es haciendo conteo de esporas en el aire, mediante el uso de trampas volumétricas colocadas a una altura de 1 metro, dentro de la plantación de té.

2.- **Relación entre Inóculo e Infección.**— Se explica del modo siguiente: Desde 1962 y, durante 4 años, se cuantificó el número de esporas en el aire, así como la incidencia de la enfermedad con intervalos semanales, en una área experimental donde no se aplicó fungicida alguno, midiendo el número de lesiones por 100 brotes. La relación entre el número de lesiones en 100 brotes y el número de esporas por m³ de aire, es mostrada en la fig. 11. Como se puede notar, la correlación no es lineal, por lo que es necesario hacer una transformación logarítmica de la raíz cuadrada del porcentaje de infección, para linearizar la curva resultante. En otras palabras, el número de esporas en el aire puede ser estimado usando la ecuación:

\[\text{No. de esporas/m}^3 \text{ de aire} = \log \sqrt{\text{o/o infección}} \]

(25)

3.- **Predicción de la esporulación.**— La esporulación fue prevista en función de las horas de sol, eficientemente, como se muestra en la fig. 12.

4.- **Predicción de la Infección.**— Como se indicó en el punto 2, existe una alta correlación entre infección y esporulación. Asimismo en el punto 3 observamos que es posible predecir la esporulación. Por lo tanto, se trató de desarrollar un modelo que permita predecir la infección, planteándose la siguiente ecuación; en función del agua líquida superficial:

\[y = 102 + 0.182x_1 + 12.24x_2 \]

(26)

Donde:
- \(Y \) = Número de lesiones por 100 brotes
- \(x_1 \) = Promedio diario de esporas
- \(x_2 \) = Promedio diario de horas de agua líquida superficial

Así mismo, se demostró que es posible predecir la infección, en función de las horas de sol, mediante la ecuación:

\[Y = 165 + 0.1678x_1 - 30.51x_2 \]

(27)

Donde:
- \(Y \) = Número de lesiones por 100 brotes
- \(x_1 \) = Promedio diario del número de esporas
- \(x_2 \) = Promedio diario de horas de sol

5.- **Realizando análisis de regresión múltiple, y, considerando las dos ecuaciones anteriores, fue posible formular el modelo final siguiente:**

\[Y = 33 + 0.3145x_1 - 0.03725x_1x_2 \]

(28)

Donde:
- \(Y \), \(x_1 \), y \(x_2 \) = ecuación 27

La eficiencia de este modelo puede mostrarse en la figura 13.
FIGURA 10.— Relación: Porcentaje de infección - Número de lesiones por 100 brotes. (KERR et al 1967, 1969)

FIGURA 12.— Esporulación prevista y observada, (KERR, 1969).

FIGURA 13.— Infección prevista y observada, (KERR y Silva, 1969).
6.- Como los campos de té en Ceylán son montañosos, con variaciones de clima, lo que no permitiría la aplicación generalizada del modelo propuesto, se trató de simplificar la ecuación de predicción, a fin de que los agricultores teñeros lo usen para decidir la aplicación de fungicidas quedando la ecuación 28 simplificada a la ecuación 24.

La eficiencia de este modelo simplificado de predicción de la enfermedad puede mostrarse en la figura 14.

CASO 2.— Formulación y uso de un modelo de predicción de la “roya amarilla” del cafe to para determinar épocas de aplicación de fungicidas.

El presente caso constituye un buen ejemplo de cómo cuantificar una epidemia policíclica, afectando tejido foliar y considerando el progreso de la enfermedad en relación al crecimiento del hospedero; se presentan datos de metodologías y resultados de un experimento realizado por el autor, en el Estado de Minas Gerais-Brasil, durante los años agrícolas 1982-1983 y 1983-1984.

Se seleccionó un cafetal del cultivar ‘catuai rojo’ susceptible a la enfermedad, plantado a distanciamiento de 4 x 1 metro, y de 10 años de edad. Durante la realización del experimento todas las prácticas agronómicas, a excepción de la aplicación de fungicidas, se efectuaron normalmente.

Para evaluar el desarrollo del cafeto, se seleccionaron seis plantas, distribuidas de manera de representar el campo experimental. En dichas plantas, se determinó el número promedio de ramas simples por planta. Para esto fue contado inicialmente el total de ramas plagiotrópicas, de las que se marcaron 10 (3 en el tercio superior, 4 en el medio, y 3 en el inferior). En cada una de estas se marcaron todas las ramas plagiotrópicas secundarias y terciarias. Mensualmente, fueron cuantificadas las nuevas ramas con dos pares de hojas.

Para evaluar la epidemia, cada parcela estaba constituida por 4 filas de 15 plantas. En cada parcela se tomaron 6 cafetos, aleatoriamente, en los que, a una altura del tercio medio, se marcaron cuatro ramas, al inicio del experimento. Posteriormente, y de acuerdo al aparecimiento de nuevas ramas, indicado por la evaluación del desarrollo fenológico del cafeto, un representativo número de ramas adicionales fueron marcadas mensualmente en cada planta, donde se cuantificó el progreso de la enfermedad.

En cada una de las cuatro ramas seleccionadas al inicio del experimento, se evaluaron cada 14 días, los siguientes parámetros:

- Número de hojas presentes en cada lectura (H)
- Número de hojas con roya en cada lectura (HR)
- Área foliar con roya en cada lectura (AFR)
- Número de hojas caídas de una lectura a otra (H₉)
- Número de hojas caídas con roya entre una lectura y otra (HR₉)
- Área foliar con roya caída de una lectura a otra (AFR₉).

Cada uno de estos parámetros fue calculado para cada rama. Después se sumaron los datos para todas las ramas, a fin de tener datos, por planta y parcela.
FIGURA 14.— Incidencia de la enfermedad observada y prevista, de acuerdo al modelo de predicción, (KERR y Silva, 1969)
Al observar una rama, evaluamos la presencia o no de hojas con o sin roya, en cada nudo; usando cuaderno o libreta de campo, se anotaron los datos, como se ilustra en la figura siguiente:

<table>
<thead>
<tr>
<th>RAMA No. 3</th>
<th>PLANTA No. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fecha de 4 nudo</td>
</tr>
<tr>
<td>Evaluación</td>
<td>D I</td>
</tr>
<tr>
<td>23.9.82</td>
<td>10</td>
</tr>
<tr>
<td>7.10.82</td>
<td>15</td>
</tr>
<tr>
<td>21.10.82</td>
<td>-</td>
</tr>
<tr>
<td>4.11.82</td>
<td>-</td>
</tr>
<tr>
<td>19.11.82</td>
<td>-</td>
</tr>
<tr>
<td>2.12.82</td>
<td>-</td>
</tr>
<tr>
<td>16.12.82</td>
<td>-</td>
</tr>
<tr>
<td>30.12.82</td>
<td>-</td>
</tr>
<tr>
<td>14.01.83</td>
<td>-</td>
</tr>
</tbody>
</table>

FIGURA 15. Ilustración sobre los datos tomados en libreta de campo, al evaluar una rama marcada para cuantificar la epidemia.

En la fig. 15 puede notarse que cuando se hizo la primera evaluación (el día 23.0.82), se observó, en el nudo No. 1, que las dos hojas estaban afectadas; la hoja del lado izquierdo tenía el 100% de su área foliar cubierta con roya, mientras que la hoja del lado derecho tenía 50% de su área con roya. En el nudo No. 2, sólo la hoja del lado izquierdo tenía roya, en un 50%; mientras que la del lado derecho estaba sana. En el nudo No. 3, las dos hojas estaban sanas. De manera que, en la primera evaluación, fueron observadas un total de 6 hojas.

Cuando se hizo la segunda evaluación, notamos que ya no están presentes la hoja izquierda del nudo No. 1, ni la hoja derecha del nudo No. 2. Pero también notamos que han aparecido dos hojas, dando lugar al nudo No. 4. Notamos, al mismo tiempo, que en la hoja derecha del nudo No. 1, el porcentaje de área foliar con roya aumentó de 5 a 15% con respecto a la lectura anterior; en la hoja izquierda también hubo un aumento de 5 a 10%. La hoja derecha del nudo No. 3 presenta, ya, un 5% de su área foliar con roya. En resumen, en la segunda evaluación notamos que han caído hojas, pero al mismo tiempo han aparecido otras, observándose un total de 6 hojas.

Cuando se hizo la tercera evaluación, notamos que han caído cuatro hojas, de las cuales tres tenían roya. Asimismo, han aparecido dos hojas con respecto a la lectura anterior. De la misma manera podemos seguir analizando para el resto de evaluaciones realizadas. Estos datos servirán para elaborar un cuadro que permita resumir los valores totales de los parámetros de la enfermedad y hospedero por planta o tratamiento, tal como se observa en el cuadro 8, el cual permite calcular la proporción de la enfermedad expresada ya sea como proporción de hojas con roya (PHR) o como proporción de área foliar con roya (PAFR). Lo interesante de esta metodología es que nos permite cuantificar la enfermedad conforme crece el hospedero y considerar la caída de hojas en relación al comportamiento del hospedero susceptible.
Fundamento y Formulación del Modelo
KUSHALAPPA et al (1982 y 1984) y HERNANDEZ (1984), formularon y evaluaron el modelo de predicción de esta enfermedad; para ello tomaron como base el esquema dado en la Figura 1, donde observamos que en el patosistema de la "Royá amarilla" del cafeto existen muchas variables relativas de patógeno al hospedero y al ambiente, que son necesarios cuantificar primero bajo condiciones de laboratorio e invernadero, y después bajo condiciones de campo.

El esquema dado en la figura 1, nos indica que en la formulación del modelo se trata de relacionar las variables independientes y dependientes, para establecer una ecuación de regresión. Las variables independientes son:

Razón de sobrevivencia del patógeno (P).— Que es expresada como: Proporción de área foliar enferma (LESION), proporción de área foliar con espora (ESPORA), proporción de esporas dispersas y depositadas en el campo de infección (ESPDEP), proporción de área foliar con esporas infectivas (ESPINF).

Macroprocesos en función del ambiente (A).— Que son expresados como: Función de de ambiente para esporulación (FAESP), para diseminación (FADIS), para infección (FAINF) y para todo un proceso monocíclico (FAPM = FAESP x FADIS x FAINF).

Hospedero (H) o tejido disponible.— Que es expresado como: Densidad de hospedero, susceptibilidad de la planta principalmente. La variable dependiente es la tasa de infección corregida para crecimiento de hospederos (\(\beta' \)). Si las variables independientes, relativas al patógeno (P), ambiente (A) y hospedero (H), las agrupamos bajo un solo parámetro, denominado Razón de sobrevivencia para proceso monocíclico (RSPM), la ecuación o modelo final de predicción de la enfermedad es: \(\beta'' = f (RSPM) \).

De acuerdo a lo expuesto, KUSHALAPPA et al (1982), establecieron la siguiente ecuación de predicción de la royá amarilla del cafeto:

\[
\beta''_{28} = 0.00044 + 14.77 \times RSPM - 2511.21 \times RSPM^2
\]

(29)

Donde: \(\beta''_{28} \) = tasa de crecimiento de la enfermedad, corregida para crecimiento de hospedero, 28 días después de la fecha de predicción.

RSPM = Razón o proporción de sobrevivencia para proceso monocíclico, 28 días antes de la fecha de predicción.

Es importante indicar que este modelo propuesto, en base a los trabajos de KUSHALAPPA et al (1980, 1984), permitió establecer que la proporción o razón de sobrevivencia de un proceso monocíclico o ciclo de patogénesis (RSPM) de Hemilaia vastatrix, calculada para períodos de 28 días antes de la fecha de predicción (FP), es un parámetro altamente correlacionado con la Tasa de infección de la enfermedad (\(\beta'' \)), calculada para períodos de 28 días después de la fecha de predicción. (Ver figura 16).

La razón de sobrevivencia para proceso monocíclico (RSPM), que es la relación existente entre el número de esporas inoculadas y el número de pústulas resultantes, (ZADOKS y SCHEIN, 1979), también fue expresada en función de parámetros ambientales, para después relacionarla con la tasa de infección.
FIGURA 16.— Relación entre la tasa de infección (ℓ^2) de la roya del cafeté, 28 días después de FP, y la Razón de sobrevivencia para proceso monocíclico, 28 días antes FP. (KUSHALAPPA et al 1982).
Después de 4 años de estudios, fue posible establecer dicho modelo de predicción (29), el mismo que puede explicarse, en forma sistemática del modo siguiente, con la finalidad de evaluar y usarlo bajo condiciones de campo:

Si deseamos predecir la tasa de incremento de la enfermedad en un período determinado después de una fecha de predicción (FP), y sabemos que el período de latencia del patógeno es de 25–30 días, optamos por cuantificar el comportamiento epidemiológico del patógeno durante las cuatro semanas previas (28 días) a la fecha de predicción. Este comportamiento epidemiológico del *Hamileia vastatrix* es cuantificado, bajo condiciones de campo, usando el parámetro RSPM antes indicado;

Dicho parámetro por lo tanto, toma en cuenta a los tres componentes epidemiológicos en relación al tiempo, como ilustra la figura 1.

Lo indicado puede expresarse mediante la ecuación:

$$RSPM = PID \times EAPM \times EHPM.$$ \hspace{2cm} (30)

Donde:
- **PID** = Proporción de inóculo disponible.
- **EAPM** = Equivalente de ambiente para proceso monocíclico.
- **EHPM** = Equivalente de hospedero para proceso monocíclico.

Cálculo de la (Proporción de inóculo disponible (PID)).

Este parámetro fue calculado en base a la proporción de área foliar con roya (PAFR), para un período de 28 días antes de la fecha de predicción, usando la ecuación 2. Este cálculo puede también ilustrarse en el Cuadro 8.

Cálculo del equivalente de ambiente para un proceso monocíclico (EAPM)

Este parámetro fue calculado mediante la ecuación:

$$EAPM = FAINF \times EADIS$$ \hspace{2cm} (31)

CUADRO 8.— Cálculo de la proporción de enfermedad para períodos de 28 días antes de cada lectura o fecha de predicción (FP).

<table>
<thead>
<tr>
<th>PRESENTES</th>
<th>CAíDAS</th>
<th>ACUMULATIVO PARA 28 DÍAS ANTES – FP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>HR</td>
<td>AFR</td>
</tr>
<tr>
<td>a a 28</td>
<td>a a 28</td>
<td>a a a a</td>
</tr>
<tr>
<td>1 26 6 23</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>2 34 6 23</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>3 32 1 1 9 9 5 5 22 22</td>
<td>41 6 23</td>
<td>0.146 0.005</td>
</tr>
<tr>
<td>4 30 0 0 4 13 1 6 1 23</td>
<td>43 6 23</td>
<td>0.136 0.005</td>
</tr>
<tr>
<td>5 30 5 13 3 7 0 1 0 1</td>
<td>37 5 13</td>
<td>0.135 0.003</td>
</tr>
<tr>
<td>6 31 6 24 7 10 2 2 4 4 4</td>
<td>41 8 28</td>
<td>0.195 0.006</td>
</tr>
<tr>
<td>7 28 7 24 5 12 1 3 4 8 4</td>
<td>40 10 32</td>
<td>0.250 0.008</td>
</tr>
<tr>
<td>8 30 5 11 4 9 2 3 13 17</td>
<td>39 8 28</td>
<td>0.200 0.007</td>
</tr>
</tbody>
</table>

42
FP = Fecha de predicción \(H = \) hojas totales. \(HR = \) hojas con roya. \(AFR = \) área foliar actual en la FP. \(a_{28} = \) caídas en 28 días antes de cada FP.

\(\text{PHR}_1 = \) proporción de hojas con roya, \((HR/H), \) 28 días antes de FP.

\(\text{PAFR}_2 = \) proporción de área foliar con roya, \((AFR/H), \) 28 días antes de FP.

Donde: \(EAINF = \) Equivalente de ambiente para infección.

\(EADIS = \) Equivalente de ambiente para diseminación.

Para calcular el parámetro Equivalente de ambiente para infección (EAINF), fueron usados datos de duración de agua líquida sobre la superficie foliar y la correspondiente temperatura, calculándose promedios para períodos de seis horas, que es el tiempo mínimo necesario que se requiere para iniciar el proceso de infección.

Para medir estos dos parámetros micrometeorológicos, se coloca dentro de la plantación un aparato de registro del grado de mojadura sobre la superficie foliar, modelo 64 b Wolfe —R. Floss, y un termógrafo para medir la temperatura, mientras el agua superficial foliar estuviera presente. El parámetro EAINF, puede calcularse, mediante la siguiente función:

\[
EAINF = \sum (EAINF_A \times EAINF_T) / n
\]

Donde: \(EAINF_A = \) Número de horas de agua líquida, observado en el campo, y transformado en equivalente de infección, en base a la Tabla No. 1.

\(EAINF_T = \) Temperatura observada en campo, mientras el agua líquida estuviera presente en la superficie foliar, y transformada en equivalente de infección, en base a la Tabla No. 1)

\(n = \) Número de períodos de agua líquida que se dan en el lapso de 28 días antes de la fecha de predicción.

Para calcular el parámetro equivalente de ambiente para diseminación (EADIS), se empleó la ecuación:

\[
EADIS = (E_1 + 0.5 E_2 / 28) \times E_3
\]

Donde: \(E_1 = \) Número de días con lluvias mayores de 1.0 mm.

\(E_2 = \) Número de días con lluvias menores de 1.0 mm.

\(E_3 = \) Proporción de densidad de hospedero donde se depositarán las ure- dosporas.

La densidad de hospederas \(E_3 \) fue calculada usando la ecuación (1)

Cálculo del equivalente de proceso monocíclico debido al hospedero (EPMH)

La fórmula siguiente permitió calcular este parámetro:

\[
EPMH = RH \times 0.5 \times (PP/10) \times (Mi)
\]

43
Donde: \(RH = \) Grado de resistencia del hospedero (0–1), siendo el valor 1 considerado como muy susceptible.

\(PP = \) Proporción de producción (estimado mensualmente como muy baja (0), baja (0.3), media (0.6) y alta (1.0), en base al número de frutos presentes en la rama marcada (se considera un máximo de 40 frutos por rama).

\(Mi = \) Meses después de la floración principal

USO DEL MODELO DE PREDICCIÓN EN EL CONTROL QUÍMICO DE LA "ROYA AMARILLA" DEL CAFÉ

De acuerdo con el modelo se considera que, mantener, mediante una medida de control, un valor de RSPM = 0.00015 en base a la proporción de área foliar con roya, equivalente a mantener un nivel de enfermedad aceptable, (10 o/o de infección de hebras presentes durante un mes). Por lo tanto, para el presente estudio fue pre-establecido un nivel de riesgo de RSPM ≥ 0.00015 para iniciar las aplicaciones de fungicidas.

Los estudios fueron conducidos durante los años agrícolas (1982-83 y 1983-84). Durante el primer año fue aplicado solamente el oxicloruro de cobre (1 y 2 veces) cuando el nivel de riesgo (RSPM ≥ 0.0015) fue alcanzado.

Los efectos de los tratamientos fueron estimados por la reducción de la tasa de infección \(\left(C^* \right) \), durante la campaña agrícola y la proporción de área bajo la curva de progreso de la enfermedad (ACPE), como fue explicado en la sección 5C y 5D.

El progreso de la enfermedad en las parcelas tratadas y no tratadas con los indicados fungicidas, es mostrado en la figura 17. Como puede notarse, el modelo de predicción muestra su eficiencia en los dos años de estudios, al reducirse significativamente la enfermedad mediante la aplicación de fungicida cúprico tomando como base el nivel de riesgo pre-establecido, tal como se observa en el Cuadro 9 y Figura 17.

Como se observa, la tasa de infección corregida para crecimiento del hospedero, calculada con las ecuaciones 18, 19, y 21 de las secciones 5B y 5C; así como la proporción de área debajo de la curva de progreso de la enfermedad intrínseca (PACPEI), calculada mediante las ecuaciones 24 y 23 de la sección 5D, son marcadamente diferentes entre los tratamientos estudiados.

CUADRO 9.— Tasa de infección \(\left(C^* \right) \) y proporción área debajo de la curva de progreso de la enfermedad intrínseca (PACPEI), en los tratamientos, durante el año 1982-1983.

<table>
<thead>
<tr>
<th>Tratamiento (*)</th>
<th>Tasa de Infección Intrínseca (\left(C^* \right))</th>
<th>PACPEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test.</td>
<td>0,0583 a</td>
<td>0,01016 a</td>
</tr>
<tr>
<td>1 cob.</td>
<td>0,0376 b</td>
<td>0,00610 a</td>
</tr>
<tr>
<td>2 cob.</td>
<td>0,0333 b</td>
<td>0,00360 b</td>
</tr>
</tbody>
</table>

(*) Test: Testigo

1 cob: Una aplicación de cúprico

2 cob: Dos aplicaciones de cúpricos.
CASO 3.— Consideraciones para el análisis cuantitativo de la sigatoka negra del plátano y banano.

La sigatoka negra, causada por el hongo *Mycosphaerella fijiensis var. difformis*. Muder y Stover, constituye el problema más limitante para la producción de los cultivos del plátano y banano. El primero es alimento básico en la dieta alimentaria y el segundo es región importante en las exportaciones de varios países de América Latina.

Por ello, la protección fitosanitaria, basado en el análisis sistemático de los factores epidemiológicos que determinan el comportamiento de esta epidemia, deberá cumplir un papel importante dentro de las actividades de sanidad vegetal, a cargo de instituciones nacionales y el apoyo de organismos internacionales para prevenir y controlar la enfermedad.

Llevando en consideración los conceptos y ejemplos presentados en los capitúlos anteriores; y consultando trabajos relativos a la epidemiología de la sigatoka negra, en diversos países, se presentan algunas pautas para el análisis y cuantificación de esta epidemia.

Diseño del área experimental en estudios epidemiológicos de la Sigatoka Negra.

La mayoría de los investigadores coinciden al señalar que en estudios epidemiológicos y de control químico de la “sigatoka”, es recomendable evaluar 10 plantas por parcela de 0.2 hectárea. Si la evaluación se realiza en un campo comercial, la muestra a considerar será de 10 plantas por hectárea.

En cada planta seleccionada, se cuentan las hojas de arriba hacia abajo, considerando como hoja No. 1, la que se encuentra completamente abierta sin tomar en cuenta la hoja “candela” o “cigarrillo”. Cada hoja se marcará utilizando cinta plástica u otro material que permita identificarla numericamente.

De preferencia, se seleccionarán plantas jóvenes, próximas a emitir su racimo floral. Paralelamente, se pueden evaluar plantas con fruto, de 40 días de edad, cuando se quiere estudiar el avance de la enfermedad en relación al número de hojas esperadas a la cosecha.

Toma y registro de datos en el campo.—

- La toma y registro de datos de campo sobre la enfermedad está en relación al parámetro que se desea calcular y al uso de estos en estudios epidemiológicos o de control químico.

Diversos autores han usado distintos parámetros para cuantificar la enfermedad; usando, en la mayoría de los casos, algunos índices arbitrarios o convencionales para su cálculo debido, principalmente, a que la atención principal está dirigida a las hojas 3,4y5 más jóvenes.

STOVER (1974), establece el cálculo de tres parámetros:
1.—Porcentaje de plantas con hojas manchadas (sporting). En este caso, se considera como hoja manchada a la que tiene como mínimo, 10 manchas o pizcas.
2.—Porcentaje de plantas con manchas sobre las hojas más jóvenes que la hoja número 8.
3.—Promedio del número o edad de la hoja más joven con mancha.

Los parámetros 1 y 3 son los más usados, tal como lo indican BUSTAMANTE (1982) y FOURE (1983), cuando se está evaluando la enfermedad con fines de prevención y evaluación del control químico.

GANRY Y LAVALLE (1983), introdujeron el parámetro EE (estado de evolución). Lo interesante de esta técnica de cálculo es que considera aspectos como el grado de afección por hoja, el estado de la hoja candela o “cigarrillo” y el ritmo de emisión de hojas.
Este parámetro también ha sido usado por otros investigadores, para cuantificar el efecto de fungicidas en el control de la enfermedad.

La lecturas se deberán realizar semanalmente, o, por lo menos, cada 15 días, iniciándose la toma de datos en el periodo menos lluvioso o cuando la enfermedad está en su punto mínimo.

Cálculo de la tasa de infección.— Para el cálculo de este parámetro epidemiológico, es más conveniente aplicar el sistema Stover de evaluación que permite determinar el avance de la enfermedad a través del tiempo con mucha exactitud. Para esto es necesario considerar el grado de severidad de la enfermedad (o/o de área foliar afectada), con base en escalas diagramáticas desarrolladas por el mismo STOVER (1974).

El método requiere que se evalúen todas las hojas de la planta, para obtener el índice general de la enfermedad, mediante la sumatoria de los grados de infección o área foliar afectada, multiplicado por el número de hojas y dividido entre el número total de hojas. De esta forma el índice general de enfermedad (IGE) equivale a la proporción de enfermedad (x); es decir, los valores observados estarán comprendidos entre 0 y 1, de acuerdo a lo expresado, el valor de X, en cada lectura, se calcula con la ecuación:

\[x_t = \frac{\sum_{i=1}^{n} (x_1, x_2, x_3, \ldots, x_n)}{N} \]

(35)

donde: \(x_t \) = IGE o proporción de enfermedad en el tiempo \(t \), \(i \)-ésima observación.

\(x_1, x_2, x_n \) = área foliar afectada (escala Stover)

en hojas 1, 2, hasta \(n \).

\(N \) = número total de hojas.

\(n \) = número de hojas afectadas en cada lectura.

Cuantificando la proporción de la enfermedad (x) en las diferentes evaluaciones, y luego expresando esos valores en forma acumulativa en relación al tiempo (lecturas semanales o quincenales), se dibuja una curva de progreso de la enfermedad. De este modo será posible calcular los parámetros epidemiológicos, tal como fuera explicado, ampliamente, en la sección 5C. Usando los modelos matemáticos que expliquen mejor la curva de progreso de la enfermedad, se determina, por análisis de regresión, la inclinación de la curva o tasa de infección (r).

Al igual que en la "sigatoka amarilla" (Mycosphaerella musicola), si analizamos una epidemia por sigatoka negra a través de los años, las curvas obtenidas mostrarán variaciones marcadas en su inclinación, indicando cambios en la tasa de infección (r); los valores más altos se encontraron en periodos lluviosos.

Como indican varios investigadores, la tasa de infección es un parámetro muy útil para propósitos comparativos, y sirve para indicar cómo variará la epidemia en relación al ambiente, a la resistencia horizontal y al efecto de los fungicidas, en el control de la enfermedad.
Area debajo de la curva de progreso de la enfermedad. — (ACPE).

Como se explicó en la sección 5, el ACPE es otro parámetro utilizado en epidemiología comparativa, especialmente en enfermedades políclicas, como es el caso de la Sigatoka Negra$. Además, el porcentaje plantas con la hoja más joven manchada (o/o HJM), (FOURE, 1983), y el Índice General de la Enfermedad (IGE) (STOVER, 1974), pueden ser usados, eficientemente, para el cálculo del Area debajo la curva de progreso de la enfermedad (ACPE), mediante la ecuación 22, dada en la sección 5 donde estos parámetros se consideran con Y_1.

Por otra parte es posible tener datos sobre el aparecimiento y muerte de hojas a través del tiempo y podemos calcular el Area debajo la curva de crecimiento del hospedero (banano) (ACCH) considerando el número de hojas totales en cada lectura como y_1, en la ecuación 22.

Como ya fuera indicado en la sección 5, si relacionamos el ACPE con el ACCH, podemos calcular el parámetro Proporción de área debajo la curva de progreso de la enfermedad intrínseca (PACPE) usando la ecuación 23.

El cálculo de estos dos importantes parámetros epidemiológicos (4 y PACPE) nos permitirá entender mejor lo que ocurre en el cultivo de banano afectado por la epidemia, cuantificar el efecto del clima sobre progreso de la enfermedad y evaluar el efecto de las medidas de control mediante la aplicación de químicos o uso de variedades resistentes. Además obtener información para la zonificación del cultivo en relación a la enfermedad, y establecer modelos de pronóstico.
BIBLIOGRAFÍA

1. ANALYTIS, S. Methodik der analyse von epidémien dargestelltem Apteischerf (Venturia inaequalis). Acta phyto-

6. BUSTAMANTE, M. y LOPEZ, S. La sigatoka negra del plátano (Musa AAA y AAB) y su impacto económico en Centro América y Sur Este de México, SARH, México, 1982, sep.

27. ———. Proportions of areas under the disease progress and host removal curves, in relation to that under host growth curve. Fitopatologia Brasileira 9: 60-72. 1984.

38. STOVER, R.H. Effect of measured levels of sigatoka disease on bananas, on fruit quality and leaf on bananas, on fruit quality and leaf senescence. Tropical Agriculture 5 (4): 531-542. 1974.

El Instituto Interamericano de Cooperación para la Agricultura, especializado en agricultura del Hemisferio, se convirtió progresivamente en un foro de fortalecimiento institucional en el campo agropecuario reconocido formalmente con la ratificación, el 8 de octubre de 1942 cuando el Consejo Directivo creó el Instituto Interamericano de Ciencias AGRICOLA Y Bienes Territoriales.

Con un mandato amplio y flexible y con una estructura de los Estados Miembros en la Junta Ejecutiva, el IICA cuenta con una estrecha red de observadores, y con numerosos organismos de recursos humanos y financieros.

Los aportes de los Estados Miembros y las importancia de estos miembros para responder a sus necesidades.

Para lograr esos objetivos el IICA concentra sus esfuerzos en algunas enfermedades de cultivos tropicales.

Estas áreas de acción expresan, de manera sencilla, los problemas comunes que enfrentan los mismos países miembros y que deben ser solucionados a través de los esfuerzos y la capacidad técnica y financiera de los mismos.